
Clone or Relative?:
Understanding the Origins of Similar Android Apps

Yuta Ishii
Waseda University

Tokyo, Japan
yuta@nsl.cs.waseda.ac.jp

Takuya Watanabe
Waseda University

Tokyo, Japan
watanabe@nsl.cs.waseda.ac.jp

Mitsuaki Akiyama
NTT Secure Platform

Laboratories
Tokyo, Japan

akiyama.mitsuaki@lab.ntt.co.jp

Tatsuya Mori
Waseda University

Tokyo, Japan
mori@nsl.cs.waseda.ac.jp

ABSTRACT
Since it is not hard to repackage an Android app, there are many
cloned apps, which we call “clones” in this work. As previous stud-
ies have reported, clones are generated for bad purposes by mali-
cious parties, e.g., adding malicious functions, injecting/replacing
advertising modules, and piracy. Besides such clones, there are
legitimate, similar apps, which we call “relatives” in this work.
These relatives are not clones but are similar in nature; i.e., they
are generated by the same app-building service or by the same de-
veloper using a same template. Given these observations, this paper
aims to answer the following two research questions: (RQ1) How
can we distinguish between clones and relatives? (RQ2) What is
the breakdown of clones and relatives in the official and third-party
marketplaces? To answer the first research question, we developed
a scalable framework called APPraiser that systematically extracts
similar apps and classifies them into clones and relatives. We note
that our key algorithms, which leverage sparseness of the data, have
the time complexity of O(n) in practice. To answer the second re-
search question, we applied the APPraiser framework to the over
1.3 millions of apps collected from official and third-party market-
places. Our analysis revealed the following findings: In the official
marketplace, 79% of similar apps were attributed to relatives while,
in the third-party marketplace, 50% of similar apps were attributed
to clones. The majority of relatives are apps developed by pro-
lific developers in both marketplaces. We also found that in the
third-party market, of the clones that were originally published in
the official market, 76% of them are malware. To the best of our
knowledge, this is the first work that clarified the breakdown of
“similar” Android apps, and quantified their origins using a huge
dataset equivalent to the size of official market.

Keywords
mobile security, Android, repackaging, large-scale data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWSPA’16, March 11 2016, New Orleans, LA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4077-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2875475.2875480

1. INTRODUCTION
Android is an open-source operating system used for mobile de-

vices such as smartphones. Android is one of the most popular
mobile device platforms widely used in the world. Worldwide ship-
ments of Android smartphones exceeded 1 billion units in 2014 [3].
The number of Android apps available on Google play has ex-
ceeded 1.8 million as of November 2015 [7]. Of the millions of An-
droid apps that can work on a billion smartphones, it is known that
a non-negligible number of apps were replicated from the original
apps. For instance, through the analysis of 23K apps collected from
six different third-party marketplaces, Zhou et al. [22] reported that
5 to 13 % of apps hosted on third-party marketplaces were repack-
aged. They also reported in Ref. [21] that “piggybacked apps”,
which added malicious payloads to legitimate apps, accounted for
0.97 to 2.7% of 85K apps they collected. In this work, we gen-
erally call those repackaged apps “clones”. The high number of
clones stems from the fact that repackaging an Android is not a
hard task. In fact, there are several tools that can systematically
repackage apps [1].

As previous studies have revealed [22, 21], many of the clones
are created for malicious purposes, e.g., inserting advertising mod-
ules that were not present in the original version, replacing accounts
used for ad libraries, and/or inserting a malicious code that steals
privacy-sensitive information. While these clones add malicious
payloads to the original apps, there is another class of clones —
pirated apps — that illegally repackage/crack paid apps. The exis-
tence of these clones are harmful not only for end-users but also for
many other stakeholders such as app developers, copyright hold-
ers, and marketplace providers. Besides clones, there are apps that
are not clones but are unintentionally similar to each other, i.e.,
they have mostly similar appearances and behaviors. As we shall
present in this paper, such similar apps originate from two cate-
gories: apps generated with app building frameworks/services and
apps developed by the same developer, possibly with a fixed tem-
plate. In this work, we generally call those unintentionally similar
apps “relatives”.

Both clones and relatives are the apps that are similar to other
apps in nature. However, we need to distinguish between clones
and relatives because the former apps are harmful and should be
removed from marketplaces. Given these backgrounds in mind, this
paper aims to answer the following two research questions through
the analysis of Android apps in the wild:

RQ1: How can we distinguish between clones and relatives?

All	 apps	

Similar	 apps	 Other	 apps	

Auto-‐built	Mass-‐produced	

Other	 similar	
apps	Malware	 Adware	 Suspicious	 Ad-‐

injected	

Input	

Extrac+on	 of	 similar	
apps	 (Sec.	 III)	

Extrac+on	 of	 	
rela+ves	 (Sec.	 IV)	

Extrac+on	 of	
clones	 (Sec.	 V)	

Relatives	

Clones	

Figure 1: High-level overview of the APPraiser framework.

RQ2: What is the breakdown of clones and relatives in the offi-
cial and third-party marketplaces?

As a solution to the first research question, we developed a light-
weight framework called APPraiser that automatically extracts sim-
ilar apps and classifies them into clones, relatives, and other sub-
categories. The key idea of the APPraiser framework is to adopt
a three-stage strategy; it first extracts similar apps using the ap-
pearance analysis. It then extracts relatives, using several intrinsic
fingerprints such as developer identities and application package
names. Finally, it classifies clones using the code difference anal-
ysis and anti-virus checkers. To address the second research ques-
tions, we use the APPraiser framework to study over 1.3 million of
apps collected from both official and third-party marketplaces. An-
alyzing apps published on two different types of markets enabled
us to perform intra- and inter-market analysis of clones and rela-
tives. We stress that although our approach has some limitations,
which will be discussed in Sec. 7, good scalability of the APPraiser
framework enabled us to perform the analysis to a million apps;
thus, we can understand the entire picture of clones disseminated
in the wild.

Our extensive analysis revealed the following findings: In the of-
ficial marketplace, 79% of similar apps were attributed to relatives
while, in the third-party marketplace, 50% of similar apps were at-
tributed to clones. The majority of relatives are apps developed by
prolific developers in both marketplaces. We also found that in the
third-party market, of the clones that were originally published in
the official market, 76% of them are malware.

The rest of this paper is organized as follows. Section 2 describes
an overview of the APPraiser framework. Section 3, 4, and 5
describe the methodologies to extract similar apps, relatives, and
clones, respectively. Section 6 presents key findings we obtained
through the analysis of our dataset with the APPraiser framework.
Section 7 discusses the limitations of the APPraiser framework and
future research directions. We also discussed the possible coun-
termeasures against malicious clones. Section 8 summarizes the
related work. We conclude our work in section 9.

2. OVERVIEW OF THE APPRAISER FRAME-
WORK

In this section, we describe the goal and overview of the AP-
Praiser framework. The goal of the APPraiser is to extract clones
and relatives from a given set of apps. The key challenge here is
to cope with huge number of apps in a scalable manner. To meet
this, the APPraiser adopts the three-stage strategy we describe in
the followings.

Figure 1 depicts the high-level overview of the APPraiser frame-
work. In the first stage, the APPraiser framework extracts simi-
lar apps, using the appearance analysis, which will be described
in Sec. 3. The extracted similar apps are clustered according to
the similarity measure. For each cluster, the APPraiser framework
identifies the origin app by checking the meta data of the apps;
e.g., ID number in the market, number of downloads, or published
date, etc. In the second stage, the APPraiser framework extracts
relatives, which compose of two categories; mass-production and
auto-built, which are the apps generated by a prolific developer and
the apps generated with app-building frameworks/services, respec-
tively. The details of extracting relatives and the two categories
will be given in Sec. 4. In the third stage, the APPraiser frame-
work extracts and classifies clones, which compose of four cate-
gories; malware, adware, suspicious apps, and ad-injected apps. To
this end, we adopt anti-virus checkers and code difference analysis.
The details of extracting relatives will be given in Sec. 5. We also
discuss the breakdown of remaining apps; i.e., "other similar apps"
in Fig. 1.

3. EXTRACTION OF SIMILAR APPS
In this section, we describe how the APPraiser framework ex-

tracts similar apps. The key idea is to measure the differences be-
tween two apps by examining their appearances. The reason why
we adopt appearance as a measure to extract similar comes from
the following observation. When an app is intentionally cloned, its
appearance is likely unchanged. For instance, because the objective
of creating malicious clones is to attract end users by pretending to
be an authentic one, there is no reason to change its appearance.
For relatives, we empirically found that majority of apps have sim-
ilar resources except the superficial appearance such as name of
apps or app icons. Thus, we can assume that most of similar apps
have the similar appearances with the original ones. In fact, sev-
eral studies such as Ref. [20] and Ref. [16] adopted resource files
in detecting similar apps. We note that while these studies used the
same approach in detecting similar apps, they did not consider the
difference between clones and relatives.

In the followings, we first describe the methodologies we used
to extract information from Android app files. Next, we present the
appearance analysis that extracts similar apps from a large number
of apps. We also present how we aggregate the extracted similar
apps into clusters.

3.1 Processing APK files
An Android app is packaged with a format called APK. An APK

file is an archive that consists of developer certificate, manifest file,
DEX file, and resource/asset files. Developer certificate can be used
to extract information about the developer of an app. Manifest file
consists of essential information about an app. For instance, it de-
clares permissions to access resources. By carefully the Manifest
file, we can check which permissions are added/removed from an
original app. DEX file consists of Dalvik bytecode where Dalvik is
a virtual machine that executes applications on Android OS. DEX
format file can be disassembled by using a tool such as smali [15].
Again, by carefully analyzing smali code, we can check which API
functions are added/removed from an original app. Resource file
and asset file are used to control the appearance of an app. It
consists of XML files that define the layout of screen, image files,
sound files, and etc. The way how we use these information will be
described below.

3.2 Appearance analysis

0.0 0.2 0.4 0.6 0.8 1.0

Jaccard Similarity

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

C
D

F

Figure 2: Jaccard index vs. cumulative fractions of app pairs.

While previous studies [20, 16] adopted resource files in detect-
ing similar apps, we extend the approach by incorporating files in
assets and lib folders, which also form the appearances of apps.
We also develop a scalable algorithm that can extract similar ob-
jects from a large population.

In the followings, we present the procedure of extracting simi-
lar apps using the resource files. We first compute MD5 digest for
each resource file. We then apply the DF-thresholding technique,
which is widely used for text classification tasks [19]. By applying
the DF-thresholding, we eliminate very popular resources that ap-
pear in a majority of the apps. These resources are too generic to
measure the similarity between apps. Specifically, we introduced
a threshold, K, and eliminated the top-K resources. We empiri-
cally derived the threshold as K = 100, 000, which accounted for
roughly 0.1% of all resources.

We now compute the appearance similarity between two apps,
using the Jaccard index, which is a metrics used for computing the
similarity of given two sets. Let a set of hash digests of an app x be
R(x). Jaccard index is defined as follows. For apps a and b, the Jac-
card index of the two apps is computed as J(a, b) = |R(a)∩R(b)|

|R(a)∪R(b)| . The
Jaccard index takes a range between 0 and 1. If there are no com-
mon resource files between two apps, the Jaccard index becomes
zero. If entire resource files are common between two apps, their
Jaccard index becomes one. In extracting resource files, we made
use of a tool called Androguard [5].

Figure 2 shows the relationship between the computed Jaccard
index for all pairs and cumulative fraction of pairs. Note that num-
ber of all pairs is N(N − 1)/2, which is much larger than the num-
ber of actually similar apps. We can see that majority of pairs have
Jaccard index close to zero. In fact, more than 99.98% of pairs had
Jaccard index of zero. We will leverage the sparseness in comput-
ing similarities between app pairs efficiently.

As a threshold to determine the similarity of two apps, we empir-
ically adopt 0.8; i.e., if J(a, b) for a given pair of apps a and b, we
extract these two apps as similar apps. We note that the threshold
is not so sensitive to our findings; i.e., other thresholds such as 0.7
and 0.9 did not affect our findings.

3.3 Fast algorithm to compute Jaccard index
for all app pairs

A naive approach to extract apps that have high Jaccard index
is to compute Jaccard index for pairwise combinations of all apps.
Clearly, such approach is not scalable because its time complexity
is O(N2), where N ≈ 1.3×106 for our dataset. We leverage the fact
that data has sparseness; i.e., many of pairs do not have common
resources and the Jaccard index is zero for such pairs. We denote a

Algorithm 1: An algorithm to compute Jaccard index for all
pairs in a set of applications, A.

1 c(x, y) = 0 /* a counter of a tuple (x, y) */
2 S = ∅ /* a set to check entrance */
3 T = ∅ /* will be used in Algorithm 2 */
4 U = ∅ /* will be used in Algorithm 2 */
5 for ∀a ∈ A do
6 for ∀r ∈ R(a) do
7 for ∀b ∈ I(r) do
8 c(a, b)← c(a, b) + 1
9 if (a, b) < S then

10 add (a, b) into S

11 for (a, b) ∈ S do
12 J(a, b) = c(a, b)/ (|R(a)| + |R(b)| − c(a, b))
13 if J(a, b) ≥ 0.8 then
14 if (a, b) < T then
15 add (a, b) into T
16 if a < U then
17 add a into U

Algorithm 2: A greedy clustering algorithm.
1 G(x) = ∅ /* a set of items in cluster x */
2 while U , ∅ do
3 x = random(U)
4 for ∀y such that (x, y) ∈ T do
5 add y into G(x)
6 remove y from U
7 remove x from U

set of all applications A. Let I(r) denote a set of applications that
have a resource, r.

An algorithm that computes Jaccard Index for all pairs is shown
in Algorithm 1. Note that if (a, b) < S , the Jaccard index is J(a, b) =
0.

Now, we turn our attention to the time complexity of the algo-
rithm. Because R(·) is independent of n = |A|, the algorithm has
the time complexity of O(|A|⟨I⟩) = O(n⟨I⟩) where ⟨I⟩ is the ex-
pected value of |I(r)|, i.e., ⟨I⟩ = 1

|R|
∑

r∈R |I(r)|, where R is a set of
all resource files. In theory, the worst case time complexity is O(n2)
where |I(r)| = n for all r; which implies that all the apps are iden-
tical. Clearly, such assumption is unrealistic. In practice, thanks to
the sparseness of the data, in most cases, |I(r)| = 1. In the case of
our dataset with n = O(106), the expected value was ⟨I⟩ = 1.72.
Thus, our algorithm works with the time complexity of O(n) if it is
applied to data with sparse structure.

3.4 Clustering similar apps and identifying the
origin app in a cluster

Using the Algorithm 1, we have extracted app pairs, T, which
have the Jaccard index larger than 0.8. Now, we aggregate the apps
into clusters, using the greedy clustering algorithm shown in Al-
gorithm 2. Let random(X) be a function that returns a randomly
selected element in a set X. Note that T and U have been com-
puted with the Algorithm 1. Hence, the clustering algorithm is
light-weight and works fast.

We note that the obtained clusters are not always optimized.
However, through the several trials using different random seeds,
we empirically validated that the obtained results are not sensitive
to our key findings. Because our objective was to study the origins

of similar apps in the wild, we decided to choose the better scala-
bility rather than the better accuracy. We further discuss the issue
in Section 7.

Finally, for each cluster G(x), we identify an original app with
the following criteria: For the official market, we consider an app
is the original if it has the maximum number of downloads among
the apps in a cluster. The rule is formulated as: For the third-party
market, we make use of the ID of apps as a heuristic to that mar-
ket. Since IDs are sequentially incremented, in the group of similar
apps, the app with the least ID is likely an original app. We note
that these approaches could fail if the actual original app is missing
in our data; i.e., all the apps in a cluster could be all relatives or
clones. We will discuss the issue in Section 6.

4. EXTRACTION OF RELATIVES
This section describes how the APPraiser framework extracts

relatives apps. The key idea is to apply fingerprints that indicate
apps are generated by a prolific, identical developer or generated
with an application generation framework/service. It is natural that
apps developed by a same person are not clones in our context.
The clones we consider are apps that are developed by an outsider
who is not associated with the author of original app(s). In the
followings, we present the details of each category and how the
APPraiser framework extracts them.

4.1 Mass-produced apps
It has been reported that there are a few prolific developers who

publish a large number of apps [18]. We observed that apps pub-
lished by such developers tend to be similar to each other. Although
not conclusive, we conjecture that such prolific developers need to
use a same template, which include common resources, to publish
a large number of apps in a short period of time. Also, outsourcing
companies that develop Android apps may use a same template or
even develop their own app developing framework to generate apps
quickly. Use of same template or same add developing framework
may introduce some similarity between apps developed. Let us call
such apps mass-produced apps.

Information about a developer can be obtained from two chan-
nels: developer certificate and developer name. A developer cer-
tificate can be extracted from an APK file. The format of a digital
certificate is X.509 v3. We extract a public key from the given cer-
tificate, and use it as a fingerprint. We note that a developer may
use different pairs of secret/public keys for signing certificates. To
cope with such a case, we relax the condition; we extract key fea-
tures of a subject from the given certificate. Namely, we generate
a tuple, organization name (O) and locality (L), and use it as a fin-
gerprint. Furthermore, developers in an organization such as app
developing company may use distinct certificates that are not asso-
ciated with each other. To cope with such a case, we further relax
the condition; we use a developer name, which can be extracted
from the app’s meta data published on a marketplace.

In summary, to extract mass-produced apps, we obtain certificate
and developer name for each app. Next, if there are at least two
apps that have exactly same public keys, same subjects of certifi-
cates, or developer names, we extract the apps as mass-produced.
We will illustrate examples of mass-produced apps in Section 6.

4.2 Auto-built apps
There are several cloud-based app building services such as iBuild

App [11] or Bizness Apps [9]. These services provide an intuitive
web interface and enable a developer to generate a multi-platform
app without writing codes for it. In this work, we call apps de-
veloped with such services Auto-built apps. It is known that Auto-

Table 1: A list of app building services and their fingerprints.
App building service fingerprint
Andromo andromo
Appery.io appery
appexpress appexpress
AppMachine artistapp
Apps Bar appsbar
AppsBuilder appsbuilder
Appy Pie appypie
Bizness Apps app_***.layout
como .conduit.
GoodBarber goodbarber
iBuild APP appbuilder
MIT App Inventor appinventor
ReverbNation reverbnation
vBulletin Mobile Suite vbulletin

built apps tend to unnecessarily install many permissions, and put
callable APIs for the permissions into the codes [18]. Auto-built
apps also tend to be shipped with common resources even though
many of them are not used. Thus, resources and code of Auto-built
apps resemble to each other even though they are independently
developed by different developers.

By analyzing the frequencies of package names of apps, we were
able to compile a list of such services. Table 1 lists the compiled
services and the corresponding fingerprints that are derived from
intrinsic keywords included in the package names. Using Table 1,
we can extract Auto-build apps.We will illustrate examples of Auto-
build apps in Section 6. We note that this approach clearly has a
limitation; i.e., if an app building service provides arbitrary pack-
age names, this approach fails. Although the approach seems to
work well for the current popular services, we might need to ad-
dress such cases in future. We envision that app building services
should leave some form of footprints in their artifacts.

5. EXTRACTION/CLASSIFICATION OF CLONES
This section describes how the APPraiser framework extracts

clones from the remaining similar apps and classifies them into
four categories; malware, adware, suspicious apps, and ad-injected
apps. Note that because our dataset is composed of only free apps,
we cannot extract another type of clone — a pirated app that cracked
an original paid app.

5.1 Extraction of malware and adware
We first extract two categories of malicious clones, malware and

adware. Our assumption is as follows. If an app B is likely repack-
aged from a legitimate original app A and the app B is detected as
malware/adware, we consider the app B is a malicious clone of the
app A. On the basis of this assumption, we first check whether a
given similar app is malware or adware. We note that we detect
malware/adware clones only if their origin app is legitimate; i.e.,
the origin app was not classified as malware/adware.

Because the aim of this work is not to propose a new method that
detects new malware/adware, we adopt straightforward approach to
extract them. We apply VirusTotal [17], which is online anti-virus
service that composes of more than 60 different commercial anti-
virus checkers. All the remaining similar apps are applied to the
VirusTotal. For a given app, if at least one of the anti-virus checkers
detect the app as malware, we consider that the app is a malicious
clone (malware). If an app is not detected as malware and at least
one of the anti-virus checkers detect the app as adware, we consider
that the app is a malicious clone (adware).

We note that VirusTotal may introduce detection errors. In ad-
dition, we cannot prove that detected malware and adware apps
are actually repackaged from the original ones. As we shall in

Table 2: List of dangerous permissions.
Permissions

ACCESS_FINE_LOCATION SEND_SMS
ACCESS_COARSE_LOCATION READ_SMS
ACCESS_LOCATION_EXTRA_COMMANDS RECEIVE_SMS
READ_LOGS WRITE_MEDIA_STORAGE
INSTALL_SHORTCUT RESTART_PACKAGES
SYSTEM_ALERT_WINDOW INSTALL_PACKAGES
SYSTEM_OVERLAY_WINDOW ACCESS_WIFI_STATE
RECEIVE_BOOT_COMPLETED DISABLE_KEYGUARD
CHANGE_NETWORK_STATE READ_CONTACTS
DOWNLOAD_WITHOUT_NOTIFICATION READ_PHONE_STATE
MOUNT_UNMOUNT_FILESYSTEMS

short, however, our manual inspection using randomly sampled
apps validated the accuracy of the approach. Therefore, we be-
lieve that potential errors due to some limitations, which are made
to achieve high scalability, may not affect the overall findings we
derived from the analysis. Furthermore, we introduce the following
two categories that can catch potential malware/adware that could
be missed by VirusTotal.

5.2 Extraction of suspicious apps/ad-injected
apps

Next, we extract two other categories: suspicious apps and ad-
injected apps, which are aimed to cover malware and adware that
are not detected by anti-virus checkers, respectively. After employ-
ing VirusTotal, we perform the static code analysis. The APPraiser
framework extracts and analyzes the following features; i.e., per-
missions, API calls associated with privacy-sensitive permissions,
and FQDN used for ad-libraries. These features are extracted from
the Manifest file or disassembled DEX file. We then check the dif-
ferences of features between the two given apps, A and B, which
represent origin and the app similar to the origin, respectively.

Table 2 lists the dangerous permissions, which could be added
to an app A. If an app B adds at least one of the permissions listed
in Table 2, and the added permission was not present in the app A,
we consider that the B is suspicious. We also check APIs. If an
app B adds at least one of the APIs associated with the permissions
listed in Table 2, and the added API function was not present in the
app A, the app B is considered as suspicious. Here, we made use
of the API calls for permission mappings extracted by a tool called
PScout [14], which was developed by Au et al. [8]. To check the
existence of APIs, we checked whether a set of APIs is included in
the disassembled code of an APK file.

Similarly, we check whether an app B adds a new FQDN asso-
ciated with ad-library. Let denote such FQDN as ad-FQDN. The
key idea of our approach is to make use of a list of ad-FQDNs
that are compiled to block network communications invoked by ad
libraries. We first collected such list of ad-FQDNs from popular
ad-block sites such as AdAway [4]. We then pruned FQDNs that
were clearly wrong records such as schema.android.com. In to-
tal, number of ad-FQDNs we compiled was 1, 027. Finally, we
explore disassembled codes of apps, and check ad-FQDNs. If an
app B adds at least one ad-FQDN, which was not present in the app
A, the app B is considered as ad-injected.

6. ANALYSIS
In this section, we present our key findings through the analysis

of huge number of Android apps in the wild. We first illustrate the
data we used for our analysis. Finally, we try to answer RQ2 by
applying the APPraiser framework to the entire data set. Finally,
we demonstrate the validity of our methodology using randomly
sampled APK files.

Table 3: Summary of Android apps used for this work.
marketplace # of APK files Data collection periods
Google Play 1,296,537 Oct 2014

Anzhi 74,185 Nov 2013 – Apr 2014
Total 1,370,722 –

Table 4: Numbers/fractions of detected similar apps.
Google Play Anzhi

Similar apps 78,919 (6.1%) 19,206 (25.9%)

Table 5: Breakdown of similar apps.
Google Play Anzhi

relatives 62,164 (78.8%) 8,121 (42.3%)
clones 6,076 (7.7%) 9,545 (49.7%)

unknown 10,679 (13.5%) 1,540 (8.0%)

Table 6: Breakdown of relatives.
Google Play Anzhi

Mass-produced 55,722 (89.6%) 8,121 (100.0%)
Auto-built 6,442 (10.4%) 0 (0.0%)

6.1 Data
We collected Android apps from the official marketplace [13]

and a third-party marketplaces [6]. Both of these marketplaces have
huge user bases. Note that these were all free apps. Although we
might see some disparity between free and paid apps, we leave this
issue open for future research. For Android apps published on of-
ficial market in particular, we made use of the data presented in
Ref. [16]. Since the original dataset included versions of an app,
we adopt only the latest version for a given app. We also eliminate
apps that are likely corrupted for some reasons.

Using the data, we can study the qualitative differences between
the two types of marketplaces, official market and third-party mar-
ket. It has been reported that the official marketplace has installed
a special defense mechanisms called Bouncer [12]. Therefore, as
previous studies have reported, official market tends to have less
number of malicious apps, compared to those in third-party mar-
kets [22]. It is noteworthy that in China, which is a country with the
highest population, official Google Play market has been unavail-
able. Therefore, people who hope to enjoy popular apps published
in Google Play may have incentive to import the clones into third-
party market. In fact, as Zhou et al. [22] reported, 5 to 13 % of apps
hosted on third-party marketplaces were repackaged. In this work,
we will study the differences of two types of markets with a lens of
similar apps.

6.2 Classification of apps and their properties
As an answer to RQ2, we now present the results of extrac-

tion/classification of apps, using the APPraiser framework. First,
Table 4 shows the numbers/fractions of detected similar apps in
each market. As we expect, the fraction of the similar apps is much
higher in the third-party market; this observation generally agrees
with the previous reports. We note that even in the official market,
non-negligible numbers of apps are categorized into similar apps.

Next, Table 5 shows the breakdown of the detected similar apps.
We first notice that the fraction of relatives is significantly high
in Google Play. The result indicates that most of similar apps de-
tected with the resource-based approach are attributed to relatives,
but not clones, which should require more attention. Our frame-
work, APPraiser, enabled us to systematically distinguish the two
categories. We also notice that the fraction of clones in Anzhi is
much higher than that in Google Play. Again, the observation gen-

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Google	Play	 Third-party	 Cross-market	

Ad-injected	

Suspicious	

Adware	

Malware	

Figure 3: Breakdown of the clones.

Table 7: Mean and median of # downloads of origin apps.
mean median

All 37,439 50 ∼ 100
clones 364,329 10, 000 ∼ 50, 000

erally agrees with the previous reports. The further breakdowns of
these categories will be shown soon.

Table 6 shows the breakdown of relatives. Clearly majority of
relatives is attributed to Mass-produced; i.e., prolific developers
tend to publish many similar apps, possibly using a same template.
In this work, we were not able to find out popular app building
services for the third-party market. As a result, number of Auto-
built apps in the third-party market was zero. We need to come up
with other heuristics to detect app-building services popular in the
third-party marketplace. We leave the issue for our future study.

Figure 3 shows the breakdown of clones, where we excluded
the origin apps. As a cross-market analysis, we consider the case
where apps published on the official market were repackaged, and
published on the third-party market. For the official marketplace,
roughly half of clones were attributed to Ad-injected while the frac-
tion of malware is around 20%. This may correlate to the exis-
tence of defense mechanisms installed on the official marketplace
– Bouncer [12]; i.e., in the official market, fraction of malware is
kept fairly lower than the third-party marketplaces. We can also
observe that roughly 70% of clones were not detected by commer-
cial anti-virus checkers; thus our code analysis worked effectively
in catching such potential malware/adware. We will present exam-
ples of those apps later. For the third-party marketplace, roughly
60% of clones were attributed to Malware. Furthermore, for the
cross-market, roughly 80% of clones were attributed to Malware.
This implies that majority of malicious clones found in the third-
party market repackaged apps originally published on the official
market.

We study which categories of apps are more likely cloned. Fig-
ure 4 presents the distributions of apps per category, which is de-
fined in the official marketplace. We notice that while the distribu-
tions are mostly similar among three types of apps: all apps, simi-
lar apps, and clones, clones are more likely repackaged from Game
apps. We conjecture that the authors of clones tend to repackage
popular apps. In fact, among all apps, the Game category was the
most popular. The results shown in Table 7 also support the conjec-
ture. That is, average/median number of downloads for the origin
apps that were cloned is higher than total average/median. Note
that on Google Play, number of downloads is expressed with the
discretized ranges; e.g., 0 ∼ 10, 10 ∼ 50, 50 ∼ 100, etc. Thus,
clones tend to target more popular apps so that they can attract vic-
tims.

6.3 Validity of extracted/classified clones

0 5 10 15 20 25 30 35
Number of Apps [%]

WEATHER

TRAVEL_AND_LOCAL

TRANSPORTATION

TOOLS

SPORTS

SOCIAL

SHOPPING

PRODUCTIVITY

PHOTOGRAPHY

PERSONALIZATION

NEWS_AND_MAGAZINES

MUSIC_AND_AUDIO

MEDICAL

MEDIA_AND_VIDEO

LIFESTYLE

LIBRARIES_AND_DEMO

HEALTH_AND_FITNESS

GAME

FINANCE

ENTERTAINMENT

EDUCATION

COMMUNICATION

COMICS

BUSINESS

BOOKS_AND_REFERENCE

C
a
te

g
o
ry

ALL

SIMILAR

CLONE

Figure 4: Distributions of apps per category (Google Play).

Table 8: Accuracies of clone detection.
clone category # of classified apps # of actual clone apps

malware 30 29
adware 30 25

suspicious 30 23
ad-injected 30 28

Total 120 106

While the classification accuracy of relatives should be high be-
cause we use intrinsic signatures to detect them, we need to validate
the classification accuracy of clones. Since there are no ground-
truth database, we validate the accuracy through manual inspec-
tion, which include in-depth static analysis and dynamic analysis.
Of the samples that were classified as clones, we randomly picked
up 30 samples for each category of clones, i.e., malware, adware,
suspicious, and ad-injected. In total, we picked up 120 samples for
validation. We then checked whether the 120 samples were actually
clones with manual inspection. Table 8 summarizes the results. As
we see, the accuracies were generally good over the categories. We
further analyzed the falsely classified samples carefully and found
that many of them should have been classified as relatives. Such
apps used common, but minor UI frameworks that made them look
similar in their code bases. It is an another issue that we need to
address in our future work. Other than the small number of errors,
the classification of clones worked successfully.

In the following, we picked up typical samples for each category,
and present what we found through the manual inspection.

6.3.1 Malware
We show two samples here. The first example shown in Fig. 5(a)

is taken from cross-market clone (malware). It clearly adds a large
advertisement windows on the initial screen of a game app. Fur-
thermore, it asks to install an additional app. In the second exam-
ple shown in Fig. 5(b), number of downloads for the origin app was
10, 000 ∼ 50, 000 while that for clone was 50 ∼ 100. As shown in
the screenshots, the clone app was unexpectedly quit soon after it
launched. Both origin and clone were still available on the market
as of July 2015.

6.3.2 Adware
The example is shown in Fig. 5(c). The clone was repackaged

from a puzzle game app. Although the clone uses different icons
and images, the structure of app was identical. The clone has been
removed from the marketplace.

(a) Malware (cross market)

(b) Malware (Google Play)

(c) Adware (Google Play)

(d) Suspicious (Google Play)

(e) Ad-injected (Google Play)

Figure 5: Screenshots: original apps (left) and clones (right).

6.3.3 Suspicious
The example shown in Fig. 5(d). An app for exploring con-

stellations. Although appearance looks identical, the suspicious
clone added the following new permissions that were not present
in the origin app: ACCESS_WIFI_STATE, GET_TASKS, READ_
PHONE_STATE, RECEIVE_BOOT_COMPLETED, and WRITE_
EXTERNAL_STORAGE. The clone also adds several additional
APIs such as getDeviceId() and new additional services such
as PushMessageService. The clone has been removed from the
market.

6.3.4 Ad-injected
The example shown in Fig. 5(e). As shown in the screenshots,

advertisement modules that were not present in the original version
were added in the clone, which was not detected as adware by anti-
virus checkers. The clone has been removed from the market.

7. DISCUSSION
In this section, we discuss several limitations of the APPraiser

framework. We also outline several future research directions that
can help extend our framework. First, to cope with the high volume
of data, we adopt a simple algorithm to find similar apps. There-

fore, clusters generated by the algorithm are not always optimized.
In our future work, we will try some scalable clustering algorithms
and see whether we see some difference. Second, because we limit
our analysis on free apps, we were not able to find pirate apps that
cracked paid apps. To fully understand the problems of app theft
with clones, we may need to shed lights on paid apps as well. We
leave the issue for future study. Finally, as we mentioned earlier,
we adopt an approach of using anti-virus checkers to detect mal-
ware and adware. However, the use of anti-virus checker is prone
to detection errors. Here, we note the case where anti-virus checker
is useful in finding malicious clones, which are difficult to find
otherwise. In the third-party marketplace, we observed that non-
negligible number of malicious clones are encrypted using a tool
called SecAPK [2], which encrypts bytecode to evade reverse en-
gineering. In our dataset, all the apps encrypted with the SecAPK
were detected as malicious with VirusTotal. There are no clear rea-
sons that a developer, who is not associated with the author of the
original app, repackaged an originally legitimate app using such an
encryption tool. Therefore, the detected apps encrypted with Se-
cAPK are likely malicious clones if it originates from a legitimate
app developed by other author.

8. RELATED WORK
There have been several studies that work on analyzing simi-

lar Android apps. They are broadly classified into two categories:
code-base approaches and resource-based approaches. We present
an overview of studies for each category. We also discuss the dif-
ferences between the previous studies and ours.

8.1 Code-based approach
DroidMOSS [22] is a framework that detects repackaged apps.

The key idea was to make use of opcode in the disassembled code.
It uses the features derived from opcode to detect repackaged apps
by leveraging fuzzy hashing in calculating the edit distance be-
tween apps. Since the analysis requires pairwise computation, it
has the time complexity of O(n2). DNADroid [10] is a frame-
work that detects cloned apps. It makes use of program depen-
dency graph (PDG) to characterize an app. The framework com-
pares PDGs between methods in a pair of apps. Again, since the
analysis requires pairwise computation, it has the time complexity
of O(n2). PiggyApp [21] is a framework that detects “piggybacked
app”, which is a repackaged app that injects new malicious code
into the original app. The key idea of the PiggyApp framework
was to adopt a technique called module decoupling, which parti-
tions the app code into primary and non-primary modules. They
also proposed a scalable approach that extracts semantic features
from the decoupled primary modules. The approach has the time
complexity of O(n log n).

In general, the computation cost of code-based approaches is
high. For instance, although the time complexity of PiggyApp
is O(n log n) with respect to the number of apps to be analyzed,
module decoupling requires additional computation costs in con-
structing PDG for each app. Due to the high computation cost,
the numbers of apps analyzed with these approaches are limited;
i.e., n = 68, 817 for DroidMOSS, n = 75, 000 for DNADroid, and
n = 84, 767 for PiggyApp. Another limitation of the code-based
approach is that it is difficult to cope with the obfuscated/encrypted
apps. Based on these observations, the resource-based approach
has attracted attentions because it can detect similar apps with low
cost and is not affected with code obfuscation/encryption. We will
summarize such works in the next subsection.

8.2 The Recourse-based approach

Viennot et al. [16] developed a system called PlayDrone, which
efficiently crawls the official Google Play Store. Using roughly 1
million of apps collected with PlayDrone, they performed various
analysis of Android apps, including the analysis of similar apps.
To this end, they used resources as a feature to search apps that
are similar to each other. They revealed that roughly 25% of apps
had duplicated content in various reasons such as application re-
branding or application cloning. Yury et al. [20] proposed a frame-
work called FSquaDRA, which detects similar apps using resource
information. They aimed to speed up hash calculations of resources
by leveraging SHA1 digest of each file that are included in the Man-
ifest file. They evaluated the effectiveness of their approach using
n = 55, 779 apps. The time complexity of the algorithm was O(n2).

8.3 Key differences between past studies and
ours

As we presented earlier, our framework APPraiser combined
both the code-based and resource-based approaches. This idea en-
abled us to establish high scalability with the resource-based ap-
proach and fast algorithm and fine-grained analysis of similar apps
with the code-based analysis. Our key algorithms, which leveraged
sparseness of the data, had the time complexity of O(n) and worked
efficiently over n = 1, 370, 000 apps. We also categorized similar
apps into two primary categories: relatives and clones, which are
further sub-categorized. Such detailed categorization clarifies the
actions we need to take against similar apps.

9. SUMMARY
In this paper, we aimed to answer the following two research

questions: (RQ1) How can we distinguish between clones and rel-
atives? (RQ2) What is the breakdown of clones and relatives in
the official and third-party marketplaces? Our solution to the first
research question was achieved with the APPraiser framework that
systematically extracts similar apps and classifies them into clones
and relatives. The key idea of the APPraiser framework was to
adopt three-stage strategy; (1) extraction similar apps using the ap-
pearance analysis, (2) extraction of relatives using several intrinsic
fingerprints, and (3) extraction and classification of clones, using
the outcomes of anti-virus checkers and code difference analysis.
To answer the second research question, we applied the APPraiser
framework to the over 1.3 millions of apps collected from official
and third-party marketplaces. Our key findings are summarized as
follows: In the official marketplace, 79% of similar apps was at-
tributed to relatives while, in the third-party marketplace, 50% of
similar apps was attributed to Clones. Majority of Relatives are
apps developed by prolific developers in both marketplaces. We
also found that in the third-party market, of the clones that were
originally published in the official market, 76% of them are mal-
ware.

The key contributions of this work can be summarized as fol-
lows: First, we clarified the breakdown of “similar” Android apps
with the notion of clones and relatives. Such clarification enables
us to take proper actions against apps with content duplications.
Second, we quantified the origins of similar apps using over 1.3
million of Android apps, which is equivalent to the size of official
market. To perform such a huge-scale analysis, we also developed
light-weight algorithms that can extract similar items from a huge,
sparse dataset with the time complexity of O(n).

10. REFERENCES
[1] Fake apps: Feigning legitimacy.

http://www.trendmicro.com/cloud-content/us/pdfs/
security-intelligence/white-papers/wp-fake-apps.pdf.

[2] The gray-zone of malware detection in android os.
https://blog.avast.com/2014/03/31/
the-gray-zone-of-malware-detection-in-android-os/.

[3] Stragety analytics.
https://www.strategyanalytics.com/strategy-
analytics/blogs/devices/smartphones/smart-
phones/2015/03/11/android-shipped-1-billion-smartphones-
worldwide-in-2014, Jan.
2015.

[4] AdAway. http://adaway.org/hosts.txt.
[5] Androguard. https://code.google.com/p/androguard/.
[6] anzhi.com. http://www.anzhi.com/.
[7] AppBrain. Android operating system statistics.

http://www.appbrain.com/stats/.
[8] K. Au, W. Yee, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:

Analyzing the android permission specification. In Proc. of
ACM CCS, pages 217–228, 2012.

[9] Bizness Apps. https://www.biznessapps.com/.
[10] J. Crussell, C. Gibler, and H. Chen. Attack of the clones:

Detecting cloned applications on android markets. In Proc.
of the 17th European Symposium on Research in Computer
Security, pages 37–54, 2012.

[11] iBuildApp. http://ibuildapp.com/.
[12] J. Oberheide and C. Miller. Dissecting the android bouncer.

SummerCon, Brooklyn, NY., 2012.
[13] G. Play. http://play.google.com/.
[14] PScout. Analyzing the Android Permission Specification.

http://pscout.csl.toronto.edu/.
[15] smali. https://code.google.com/p/smali/.
[16] N. Viennot, E. Garcia, and J. Nieh. A measurement study of

google play. Proc. of ACM SIGMETRICS 2014, June 2014.
[17] VirusTotal. https://www.virustotal.com/.
[18] T. Watanabe, M. Akiyama, T. Sakai, H. Washizaki, and

T. Mori. Understanding the inconsistencies between text
descriptions and the use of privacy-sensitive resources of
mobile apps. In Symposium on Usable Privacy and Security
(SOUPS), 2015.

[19] Y. Yang and J. O. Pedersen. A comparative study on feature
selection in text categorization. In Proceedings of the
Fourteenth International Conference on Machine Learning,
ICML ’97, pages 412–420, 1997.

[20] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. L. Spina,
and E. Moser. Fsquadra: Fast detection of repackaged
applications. Proc. of IFIP DBSec ’14, pages 131–146, 2014.

[21] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou. Fast,
scalable detection of "piggybacked" mobile applications. In
Proc. of the third ACM CODASPY 2013, pages 185–196.

[22] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party android
marketplaces. In Proc. of the second ACM CODASPY 2012,
pages 317–326.

