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Abstract

Packet sampling has become a practical and indispens-
able means to measure flow statistics. Recent studies have
demonstrated that analyzing traffic patterns is crucial in
detecting network anomalies. We may not be able to in-
fer the original traffic patterns correctly from the sampled
flow statistics because sampling process wipes out a lot of
information about small flows, which play a vital role in
determining the characteristics of traffic patterns. In this
paper, we first show an example of how the sampling pro-
cess wipes out the original statistics using measured data.
Then, we show empirical examples indicating that the origi-
nal traffic pattern cannot be inferred correctly even if we use
a statistical inference method for incomplete data, i.e., the
EM algorithm, for sampled flow statistics. Finally, we show
that additional information about the original flow statis-
tics, the number of unsampled flows, is helpful in tracking
the change in original traffic patterns using sampled flow
statistics.

1. Introduction
With the recent growth in link speed, packet sampling

has attracted much attention as a scalable means to measure
network traffic from both industrial and research communi-
ties [1, 6]. The technique has been standardized in the IETF
psamp working group [2], and most major vendors have em-
bedded packet sampling functions into their router products.
Most large ISPs, which are operating high-bandwidth links
such as OC192, are monitoring their network using packet
sampling techniques.

Many recent studies have demonstrated that analyzing
traffic patterns is crucial in detecting network anomalies
[4, 7]. For example, a sharp increase in the number of
small flows, e.g., those with 1 – 3 packets, may be related
to an anomalous event such as SYN flooding or a worm
outbreak. Such events cannot be characterized by conven-
tional volume-based statistics such as byte or packet counts.
Lakhina et al. [4] showed that the change in traffic pat-
tern can be successfully characterized by information en-
tropy, which can effectively express the concentration or
dispersion of the distributions of observed random vari-

ables. However, we may not able to infer the original traffic
patterns correctly from the sampled flow statistics because
the sampling process wipes out a lot of information about
small flows, which play a vital role in determining the char-
acteristics of traffic patterns (see [3] for a detailed analysis).
Therefore, studying how the sampling affects the observed
traffic patterns is meaningful.

In this paper, first, we demonstrate that packet sampling
with a low sampling frequency, e.g, f = 10−3, which is a
commonly used parameter setting in backbone links, causes
the change in traffic patterns to be undetected. Then, we
show experimental examples in which even if we use the
statistical inference technique for the incomplete data, i.e.,
the EM algorithm, the original traffic pattern cannot be re-
constructed correctly. Finally, we show that the maximum
likelihood estimation with additional information about the
original flow statistics, the number of unsampled flows, is
effective in tracking the change in original traffic patterns.

2. Traffic pattern and packet sampling

This section shows how packet sampling affects ob-
served traffic patterns. Throughout this paper, we use the
publicly available packet traces obtained from [5]. The
traces used in this paper were measured on one of the In-
ternational backbone links of the WIDE project January 7,
2005 from 19:00 to 23:00. The measurement bin was set to
5 minutes. Several time series of original and sampled flow
statistics with the sampling frequencies of f ∈

{
10−2, 10−3

}
are shown in Fig. 1. Here, we emulated random packet sam-
pling. We focus on (1) the number of observed (sampled)
flows, (2) the ratio of one-packet flows (OPF ratio), and (3)
entropy when analyzing flow statistics. Here, the OPF ra-
tio is the ratio of the number of flows that comprise exactly
one packet divided by the total number of flows, and the en-
tropy s is defined as s = −∑i p(i) log p(i), where p(i) is the
probability that a flow has i packets.

In the original flow statistics, we see that the number
of flows has a sharp spike around 21:20. Through the de-
tailed analysis of measured data, we found that the spike is
due to a severe SYN flooding attack against several desti-
nation addresses from a number of possibly spoofed source
addresses. We can also see that the increase/decrease in
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Figure 1. Time series of original and sampled
flow statistics.

the OPF ratio roughly corresponds to the decrease/increase
in entropy, which means that the concentration of the OPF
decreases the entropy. As shown in Fig. 2, the number of
flows and OPF ratio are not well correlated while OPF ratio
and entropy are fairly well correlated negatively. Actually,
the correlation coefficient between the number of flows and
OPF ratio is 0.795 while that between the OPF ratio and
entropy is -0.958. Thus, entropy can effectively reflect the
change in flow mix, i.e., increase in OPF ratio in this case,
while the number of flows cannot always correctly reflect
the change in the flow mix. The increase in OPF is related to
some anomalous events such as SYN flooding, so network
scanning and port scanning, using entropy as a measure of
a traffic pattern are quite useful.

On the other hand, as the sampling frequency decreases,
we see that the changes in these statistics become totally un-
detectable because most OPFs are not sampled. This obser-
vation empirically suggests that detecting network anoma-
lies from sampled flow statistics is a difficult task. In the
next section, we describe how to infer original flow statis-
tics from the sampled flow statistics.

3. Inferring original flow length distribution
3.1 Modeling flow length distributions

The flow length distribution in the Internet is well known
to be heavy-tailed, which is considered as one of the in-
variant characteristics of the Internet [6]. Here, flow length
means the number of packets in a flow. The Pareto distri-
bution is known to be the simplest model for characteriz-
ing heavy-tailed distributions. Thus, we adopt the Pareto
distribution for modeling flow-length distributions. Adopt-
ing more complex distribution models or nonparametric ap-
proaches is also possible [1]. However, as we shall see
below, the modeling of flow-length distributions with the
Pareto distribution is quite effective in characterizing traffic
patterns in terms of entropy.

The probability density function of the Pareto distribu-
tion is given by f (x) = θaθ/xθ+1, where x ≥ a. We model
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Figure 2. Correlation among original flow
statistics.
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Figure 3. Flow length distribution approxi-
mated using Pareto distribution.

the flow length X with the Pareto distribution. The random
variable X takes positive discrete values 1, 2, 3, . . ., so we
set the scale parameter to a = 1 and discretize the distri-
bution with the following probability mass function p(k; θ).

p(k; θ) = Pr[X = k] =
∫ k+1

k
f (x)dx = k−θ − (k + 1)−θ (1)

The ML estimation of parameter θ can be obtained by nu-
merically solving the following log-likelihood equation,

xmax∑
k=1

Nk
−k−θ log k + (k + 1)−θ log(k + 1)

k−θ − (k + 1)−θ
= 0,

where Nk is the number of flows that comprise k packets in
the original flows and xmax is the maximum flow length in
the original flows.

The log-log complementary distribution (LLCD) plots of
the empirical distribution of the original flow lengths and its
Pareto approximation (dashed line) for one of the traces are
shown in Fig. 3. We observe that the Pareto model fits the
empirical distribution fairly well especially in the range of
small flow lengths. The comparison between the actual en-
tropy and the estimated entropy obtained with the Pareto ap-
proximation for all the traces is shown in Fig. 4. We can see
that the actual entropy and the estimated entropy agree quite
well; the correlation coefficient was 0.999. This comes from
the fact that entropy is strongly affected by the flow lengths
with high probabilities, i.e., small flow lengths, which are
well approximated by the Pareto distribution.
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Figure 4. Actual entropy vs. the estimated en-
tropy using Pareto approximation.

3.2 Inferring with the EM algorithm

We aim to infer the original flow distribution from the
incomplete observation, i.e., sampled flow statistics. Sup-
pose N packets appear during a certain time period, and
each of them is sampled independently with probability f .
In other words, we consider random sampling from a pop-
ulation of N packets with sampling frequency f . We de-
fine Xj and Yj ( j = 1, 2, . . . ,M) as the original and sam-
pled flow lengths of the j-th flow, respectively. By defini-
tion, N = X1 + X2 + · · · + XM . Let ni (i = 0, 1, . . . , ymax)
denote the number of flows whose sampled flow length
is equal to i, where ymax denotes the maximal sampled
flow length. We consider random sampling, so the condi-
tional probability that a sampled flow has i packets given
that the flow originally has k packets is given by the bi-
nomial distribution, q(i | k) =

(
i
k

)
f i (1 − f )k−i. Thus, the

probability that a sampled flow has i packets is given by
r(i; θ) =

∑N
k=i q (i | k) p (k; θ), where p (k; θ) is given by

Eq. (1). We estimate parameter θ from the observed statis-
tics n1, n2, . . . , nymax . Note that we cannot observe n0, the
number of flows with zero packets sampled. The complete-
data log likelihood for sampled flow statistics is given by

log Lc(θ) = log
ymax∏
i=0

r(i; θ)ni =

ymax∑
i=0

ni log r(i; θ). (2)

E-step: Let θ(0) be the initially specified value for
θ. The conditional expectation of log Lc(θ) given
n1, . . . , nymax using θ(0) can be written as Q(θ; θ(0)) =
Eθ(0)
{
log Lc(θ) | n1, . . . , nm

}
. We have log Lc(θ) as a linear

function of the unobservable data n0, so the E-step is estab-
lished by replacing n0 with its current conditional expecta-
tions given the observed data. Let the conditional expecta-
tions of n0 be n(0)

0 . We estimate n(0)
0 using the odds ratio,

i.e.,

n(0)
0 = Eθ(0) (n0 | n1, . . . , nymax ) =

r(0; θ(0))
1 − r(0; θ(0))

ymax∑
i=1

ni. (3)

M-step: The M-step is undertaken on the first iteration by
choosing θ = θ(1) that maximizes Q(θ; θ(0)). Such a value
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Figure 5. Original θ vs. estimated θ̂ using EM
algorithm.

can be obtained by numerically solving ∂Q(θ;θ(0))
∂θ

= 0. Then,
the new θ(1) is substituted into the right-hand side of Eq. (3)
to produce an updated value of n(1)

0 . In the same manner,
we repeat the E- and M-steps alternately until the estimated
parameter θ(k) on the kth iteration satisfies

∣∣∣θ(k) − θ(k−1)
∣∣∣ <

10−4.

3.3 Validation of accuracy
We apply the inference technique proposed in the pre-

vious section to both measured and simulated data. The
simulated data produced by the ideal discrete Pareto distri-
bution with the shape parameter of θ ∈ {1.2, 1.4, 1.6, 1.8},
where we produced 11 distinct data sets for each shape pa-
rameter using different random seeds to generate the data.
In total, we examined 48 measured data sets and 44 sim-
ulated data sets. For both data sets, we emulated the ran-
dom packet-sampling process with sampling frequencies of
f ∈
{
10−2, 10−3

}
. The results are shown in Fig. 5, where CC

means the correlation coefficient. For the measured data, we
see that the estimation is not so good and the estimated val-
ues are underestimated compared to the actual values. This
trend becomes more severe as the sampling frequency de-
creases. We conjecture that the reason why the parameters
are not correctly estimated and underestimated is because
of the approximation of the Pareto distribution. As shown
in Fig. 3, the approximation is not so good for large flow
lengths. Moreover, most sampled-flow statistics come from
large flows. Therefore, a possible approach to improve the
estimation accuracy may be to use the information about
the unsampled statistics, as we will see below. On the other
hand, for simulated data, the estimations are fairly good for
f = 10−2. However, the estimations deviate for f = 10−3,
especially for large θ.

4. Use of number of unsampled flows
From the sampled-flow statistics, we cannot observe n0,

which is the number of flows that are not sampled. In this
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Figure 6. Original θ vs. the estimated θ̂ using
presented method.

section, we show an empirical study of how the informa-
tion about n0 improves the inference. Meanwhile, to obtain
such statistics, we have two possible solutions. One is to in-
fer the number of original flows from the statistics of TCP
flags that are included in common flow records such as Net-
Flow. This idea was proposed by Duffield et al. in [1]. That
is, the number of TCP flows can be inferred using the num-
ber of sampled flows whose SYN flag is set. Assuming that
most flows on the Internet are TCP flows and each flow has
one SYN packet, the number of original flows can be in-
ferred as M̂ = f −1ms, where ms is the number of sampled
flows with the SYN flag set. The disadvantage of this ap-
proach is that non-TCP flows such as UDP and ICMP are
not considered. Another approach is to measure the num-
ber of flows directly. We can adopt several techniques to
achieve such measurement that can be achieved in high-
speed networks with very small amount of memory, e.g.,
probabilistic counting or bloom filter. The disadvantage of
this approach is that the addition of new measurement func-
tions on routers is required.

We assume that we can obtain n0 through the above ap-
proaches. Then, we find the parameter θ that maximizes
the complete-data log likelihood defined in Eq. (2). That is,
we numerically solve the equation, ∂ log Lc(θ)

∂θ
= 0. Here, we

used the actual value of n0 for each data set. The results
are shown in Fig. 6. Although the parameters are underes-
timated again, the correlations with the original parameters
are significantly improved. We conjecture that the reason
why the presented method, i.e., the MLE with the infor-
mation about n0, underestimates parameters is because we
do not have any information about the flow mix of the un-
sampled data, which cannot be obtained unless we know
the original distributions. To see the usefulness of the esti-
mated parameters, we calculate entropy using the estimated
parameters (see Fig. 7). For comparison, we also plot the
original entropy. We see that the presented method tracks
the change in the original traffic pattern well while the esti-
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Figure 7. Estimated entropy by presented
method (left) and EM algorithm (right). Top
is actual entropy.

mations using the EM algorithm fail.

5. Conclusion
We demonstrated that packet sampling causes the change

in traffic pattern to become undetected and the original traf-
fic pattern cannot always be reconstructed even if we use
the EM algorithm for the sampled-flow statistics. We also
showed that additional information about the original flow
statistics, the number of unsampled flows, is effective in
tracking the change in original traffic patterns. We be-
lieve that this approach is promising in establishing a scal-
able network operation scheme that can also detect network
anomalies.
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