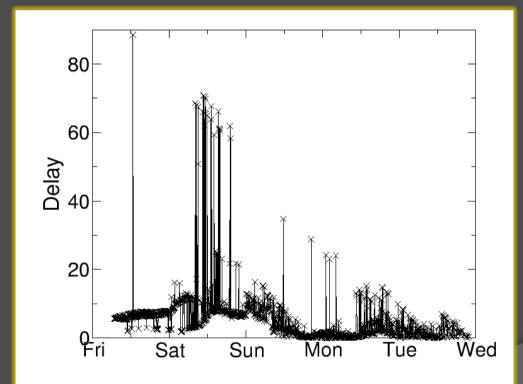
ON THE EFFECTIVENESS OF IP REPUTATION FOR SPAM FILTERING

COMSNETS 2010 January 9, 2010

Holly Esquivel (UW-Madison, USA) <u>Tatsuya Mori (</u>NTT, Japan; presenter) Aditya Akella (UW-Madison, USA)

Torrent of spam today

More than 95% of email today is spam


Major ESPs receive more than 100 million spam messages per day

Evolution of spamming

- Present since the beginning (1978), it never stops growing
- Spamming still has strong incentive as a business
- Spammers own global-scale distributed spamming infrastructures (botnets)

How Is Receiving Huge Amount of Spam Harmful?

 Spamming is not just a nuisance. It could severely damage our information infrastructure.

Mail delivery delay (hours) at an enterprise mail system.

IP Reputation Services

- One technique to mitigate such spam traffic
- This service provides a score (reputation) for an IP address
- The most light-weight solution that precedes other anti-spam solutions.
- Based on reports from TTP and measurement (e.g., spam traps)
- Major spam appliance companies operate their own IP reputation services
 - Ironport, Symantec, etc.
 - are black boxes to users

Questions:

- What fraction of email can be correctly classified with IP reputation services?
 - Especially white lists since they previously have often been overlooked
- It is the services of the services of the services of the service of the servi

Our Contributions:

 Classify email senders into three primary categories and study the effectiveness of IP reputation services for each category

Present methodologies to build custom local IP reputation lists

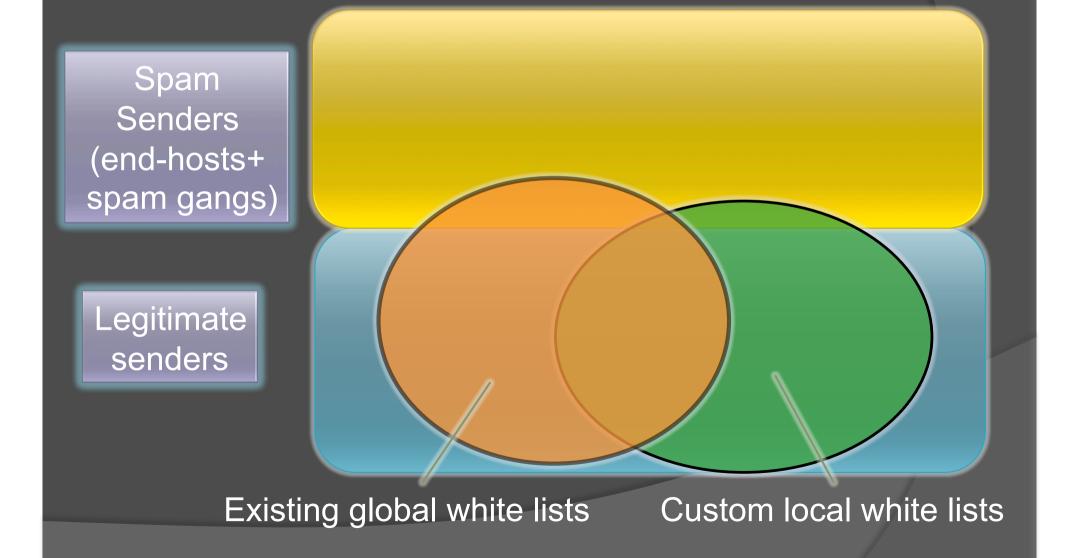
Study other sources of email senders (open proxy, hijacked prefix)

 Study the characteristics of spamming for each category of senders

Three Categories of Email Senders

Legitimate servers

 MTA for legitimate ISP, ESP, Companies, Universities, ...


Ind-hosts

Compromised end-hosts (botnets)

Spam gangs

- Bullet-proof hosting servers
- E.g., Russian Business Network

Performance Evaluation of IP Reputation Lists

Review of DNS SPF

- SPF: Sender Policy Framework
- A simple authentication mechanism that associates domain and IP addresses
 - E.g., ieee.org → v=spf1 ip4:72.236.151.122/32 …
- Some spammers also use SPF to pass the simple authentication checks
 - We can use this to cluster their domains and addresses

Building Custom IP Reputation Lists -- Legitimate Servers --

WL1: Legit-Popular (web)

 Compile a list of legitimate domains manually and extract associated IP addresses

WL2: SPF-good (history-based)

- Collect domains with good scores and extract associated IP addresses
- Sufficient history required

Building Custom IP Reputation Lists -- End-hosts --

BL1: Hostname (Naming heuristics)

- Compile heuristics for hostnames, e.g., ppp222.foo.com, dyn34-13-7-12.bar.com
- Check the RDNS of all the IP addresses

BL2: Srizbi (Malware heuristics)
 Check the TCP header of a sender
 If the pattern matches to special case, it is likely a bot.

Building Custom IP Reputation Lists -- Spam Gangs --

BL3: Bad Blocks (history-based)

- Extract blocks (clusters) of IP addresses with bad history
- Clustering with BGP prefix and some heuristics (/29-based aggregation)

BL4: SPF-bad (history-based)

 Same as SPF-good except for bad domains and their associated IP addresses

Data Sets

SMTP logs

- Timestamp, sender IP, sender domain, score
- Collected at University of Wisconsin-Madison

Tcpdump

Used for compiling custom blacklists (BL2)

Performance of IP Reputation (1)

EFFECTIVENESS OF WHITELISTS (MARCH 2008).

List	#IPs	#Spam	#Ham	#Unclassified
Total	5,160,210	31,831,274	11,834,098	826,862
DNSWL	23,762	484,855	6,648,228	231,581
Legit-popular	34,227	131,376	9,578,685	332,570
SPF-good	30,060	72,498	9,455,952	320,333
Union	49,612	546,141	10,400,068	387,810

Custom reputation lists cover more ham and less spam

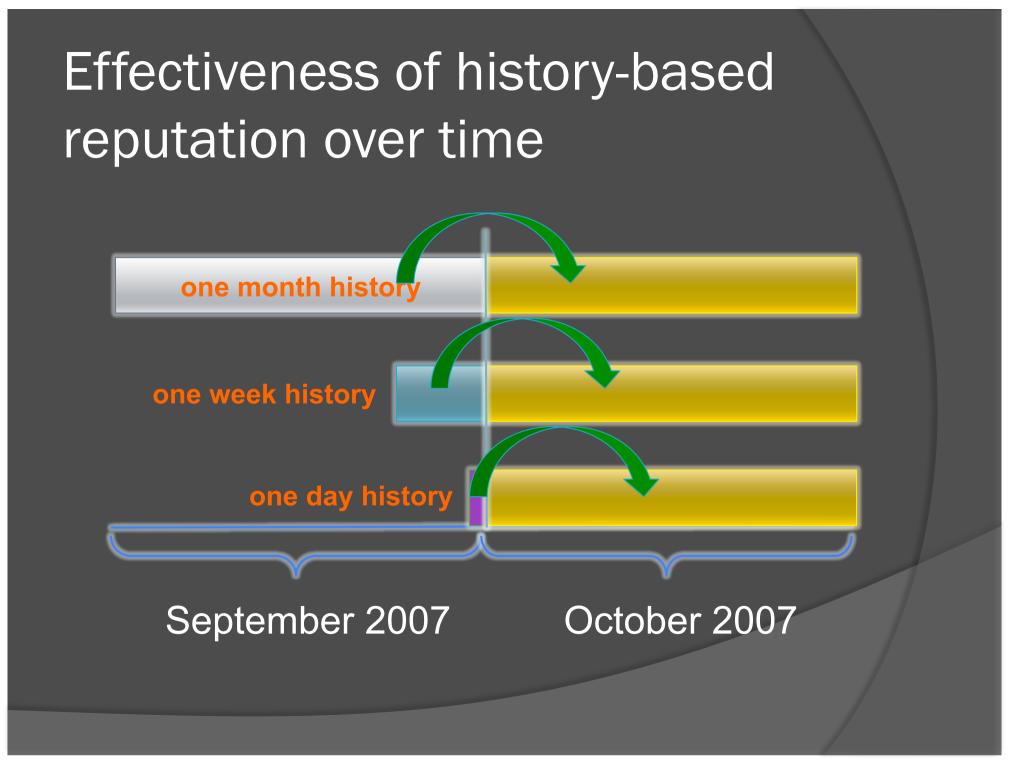
• In total, reputation lists cover roughly 90% of ham

Performance of IP Reputation (2)

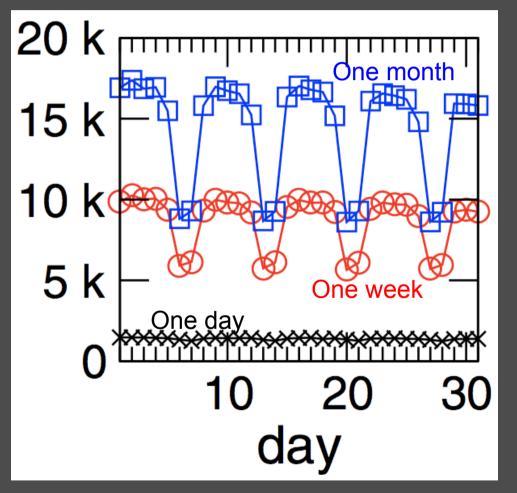
EFFECTIVENESS OF END-HOST BLACKLISTS (MARCH 2008).

List	#IPs	#Spam	#Ham	#Unclassified
Total	5,160,210	31,831,274	11,834,098	826,862
PBL+UDMap	4,014,156	13,619,609	146,334	140,134
Hostname	978,400	5,878,251	76,018	71,676
Srizbi	1,105,008	4,051,060	10,418	51,722
Union	4,388,812	17,530,909	224,903	199,842

Custom lists complement the coverage by 22%

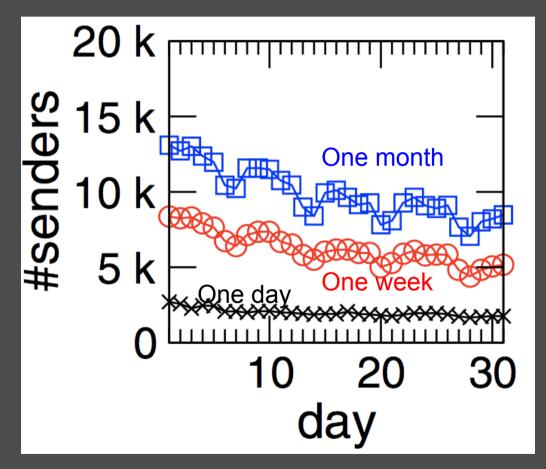

•In total, the reputation lists cover more than 54% of spam

Performance of IP Reputation (3)


EFFECTIVENESS OF SPAM GANG BLACKLISTS (MARCH 2008).

List	#IPs	#Spam	#Ham	#Unclassified
Total	5,160,210	31,831,274	11,834,098	826,862
SBL	7,297	342,989	1.402	62
Bad blocks	33,573	3,150,770	19,275	10,835
SPF-bad	111,682	11,436,122	71,802	34,980
Union	132,760	11,931,074	84,250	39,720

- Custom lists cover much more spam with low fraction of false positives
- In total, the reputation lists cover more than 38% of spam

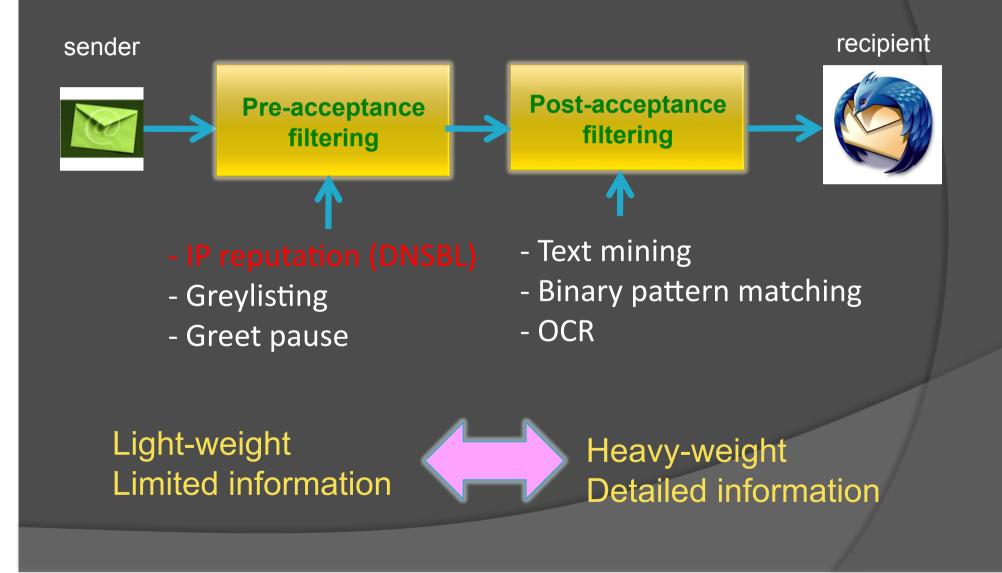


Coverage of SPF-good over time

- Constant over time
 - Good ones are stable
 - Cyclic patterns
 - Human activity
 - Longer learning covers more senders
 - One week is comparable to one month

Coverage of SPF-Bad over time

- Degraded over time
 - Bad ones are not stable
- Weaker cyclic patterns
 - Machine activity
- Longer learning covers more senders
 - One week is comparable to one month


Contribution of each category

List	#IPs	#Spam	#Ham
Total	100 %	100 %	100 %
Legit Servers	1.0 %	1.7 %	87.9 %
End-hosts	85.0 %	55.0 %	0.5 %
Spam gangs	1.6 %	28.6 %	0.6 %
Hijacked prefixes	0.4 %	0.4 %	0.2 %
Open Relays/Proxies	0.9 %	2.6 %	0.1 %
Unclassified	11.1 %	11.7 %	10.7 %

Summary and Future Work

- Empirically showed up to 90% of spam and ham can be classified with IP reputation services if compiled correctly.
- Local reputation lists can complement global IP reputation services.
- Good IPs are stable over time. Reputation lists for spam gangs need frequent updates.
- Aggregating IP reputation lists using machine learning techniques a viable direction for improving lists further

Existing anti-spam solutions

