
Spatio-temporal Factorization of Log Data for
Understanding Network Events

Tatsuaki Kimura∗, Keisuke Ishibashi∗§, Tatsuya Mori†, Hiroshi Sawada‡§, Tsuyoshi Toyono∗,
Ken Nishimatsu∗, Akio Watanabe∗, Akihiro Shimoda∗ and Kohei Shiomoto∗
∗NTT Network Technology Laboratories, NTT Corporation, Tokyo 180-8585, Japan

†School of Fundamental Science and Engineering, Waseda University, Tokyo 169-8555, Japan
‡NTT Service Evolution Laboratories, NTT Corporation, Kanagawa 239-0847, Japan

§NTT Machine Learning and Data Science Center, NTT Corporation, Kyoto 610-0237, Japan

Abstract—Understanding the impacts and patterns of network
events such as link flaps or hardware errors is crucial for
diagnosing network anomalies. In large production networks,
analyzing the log messages that record network events has
become a challenging task due to the following two reasons. First,
the log messages are composed of unstructured text messages
generated by vendor-specific rules. Second, network equipment
such as routers, switches, and RADIUS severs generate various
log messages induced by network events that span across several
geographical locations, network layers, protocols, and services.
In this paper, we have tackled these obstacles by building two
novel techniques: statistical template extraction (STE) and log
tensor factorization (LTF). STE leverages a statistical clustering
technique to automatically extract primary templates from un-
structured log messages. LTF aims to build a statistical model that
captures spatial-temporal patterns of log messages. Such spatial-
temporal patterns provide useful insights into understanding the
impacts and root cause of hidden network events. This paper first
formulates our problem in a mathematical way. We then validate
our techniques using massive amount of network log messages
collected from a large operating network. We also demonstrate
several case studies that validate the usefulness of our technique.

I. INTRODUCTION

With the increase in the number of network elements and
services (e.g. IPTV, VoIP), it has become extremely difficult
to understand the impacts and patterns of network events such
as link flaps or hardware errors. The diversity of services
complicates the interactions of events, a common link down
event leads not only to neighboring nodes going down, but
may cause virtual path disconnections or cause related ser-
vices to go down. Typically, a Network Management System
(NMS), e.g. [1]–[4], monitors network health to deal with
the enormous network events that occur on a daily basis by
using Simple Network Management Protocol (SNMP) traps or
syslog triggers. Predefined rules in NMSs are such that alarms
represent apparently critical states. In today’s networks, on the
other hand, operators often care about temporally abnormal
events, e.g. whether customers can access the service even
though its quality is low. In addition, NMS alarms are so
obscure that they fail to capture the impacts or structures of
events such as the network layer, protocol, service dependen-
cies. However, understanding such complicated structures of

network events is crucial for caring out a detailed diagnosis
of network anomalies.

Network logs, including syslogs and alarm messages re-
ported by the NMS, contain some of the most important
information for diagnosing network anomalies. Network oper-
ators usually start their troubleshooting processes with alarm
messages. Syslog messages are often used for more complex
drill-down processes, in which operators check the root cause
of problems and decide what they should do to recover from
the failure. However, despite the usefulness of network logs,
they are not fully utilized in large production networks for
two reasons: (i) log messages are composed of unstructured
text messages generated by vendor-specific rules. Since a large
network consists of multi-vendor elements, formats of logs
are highly diverse. (ii) Log data is very complex because
network equipment such as routers, switches, and RADIUS
severs generate various log messages induced by underlying
network events that span across several geographical locations,
network layers, protocols, and services.

A simple example that illustrates the complexity of log
messages is shown in Fig. 1. In this example, a set of link
down/up log messages is generated by a link flap event, which
can be differentiated from the original link down event. Note
that the same log message pattern appears in different hosts
with the layer 2 relationship. In addition to this, during the
link flap event, other events (e.g. a cron job in the example
of Fig. 1) may happen in the network. Thus, log data can be
considered to be a superposition of the spatial and temporal
patterns caused by underlying network events. Since various
events occur from hour to hour throughout the entire network,
extracting these spatial-temporal patterns of log messages from
unstructured and complex log data is far more challenging.

Understanding the spatial-temporal patterns of log messages
provides useful insights into the network anomaly diagnosis.
For instance, it enables us to correlate multiple link flap events
that occur at different equipment each working in different
network layers. Such analysis is crucial in understanding the
root cause and impacts of the network anomaly. It also enables
us to extract hidden network events that could lead to network
failures. The extracted information can be used for preventive
maintenance operation.978-1-4799-3360-0/14/$31.00 c⃝ 2014 IEEE

2

Fig. 1. Log data can be considered as a superposition of log message patterns
induced by network events; in this example, we observe messages associated
with both link flap (msg1–3) event and cron job (msg4–6).

This paper presents a novel spatio-temporal factorization
technique, which automatically learns and identifies spatial
and temporal patterns of log messages from unstructured and
complex log data without relying on any domain knowledge.
Here, spatio refers to relationships among hosts in the network.
To achieve our goal, we first develop a Statistical Tem-
plate Extraction (STE) method that automatically converts
unformatted log data to primary templates using a statistical
clustering algorithm. We then mathematically formulate the
pattern of log messages by regarding it as a rank-3 tensor
(a template, a host, and a timestamp). To build a statistical
model that captures spatial-temporal patterns of log messages,
we develop Log Tensor Factorization (LTF) based on Non-
negative Matrix Factorization (NMF) [14] and Nonnegative
Tensor Factorization (NTF) [8], which are powerful techniques
for decomposing a mixture of nonnegative elements into raw
features in unsupervised manner. By using LTF, we can obtain
spatial and temporal patterns of log message groups, which can
be considered to be caused by the underlying network events
according to our observation. We successfully model both the
spatial and temporal relationships, which cannot be obtained
by existing approaches because they are insufficient to model
these multiple relationships. To the best of our knowledge,
this formulation is the first attempt to analyze log data.
Further, despite the special features of LTF, we derive a simple
algorithm for obtaining the solution. Finally, we describe our
validation of the proposed method using a massive number
of data sets collected from a large scale operating network.
Experimental results show that our techniques successfully
fit the spatial-temporal patterns of network events. We also
demonstrate several case studies that validate the usefulness
of our technique.

We briefly summarize our contributions as follows:

• We developed a statistical template extraction method,
STE, that automatically extracts primary templates from
massive and unstructured network logs without using any
prior information about log format.

• We developed a novel tensor factorization method, LTF,
that enables us to model spatial-temporal patterns of log
messages from the templates extracted by STE. We also

derived a simple algorithm for LTF.
• We validated LTF fits well the spatial-temporal patterns

of network events through the extensive analysis of
measurement data collected at a large operating network.
We also demonstrated case studies that clearly show the
usefulness of LTF.

The rest of this paper is organized as follows. Section II
summarizes the works related to our research. In Section III,
we explain network logs, log templates and the definition
of network events to mathematically formulate our problem.
Section IV provides our main result, the log tensor factor-
ization. In Section V, we conduct several validations for the
proposed method and present case studies in Section VI.
Finally, Section VII concludes our paper.

II. RELATED WORK

There are many commercial products that aim to increase
the efficiency of network management and operations [1]–[5].
Specifically, Splunk [5] is a log analytics platform that collects
machine log data in real time and helps achieve fast search and
analysis. Although NMSs [1]–[4] have a root cause analysis
(RCA) function, they cannot identify detailed network events
and require domain knowledge.

A lot of research has also been done in the areas of network
fault diagnosis and fault localization by using various network
data in enterprise network. Yamanishi et al. [26] proposed a
technique to detect system failure from server syslog using
a mixture of Hidden Markov Models. SCORE [13] and
Shrink [10] are both fault localization systems using a bipartite
graph that models relationships among network elements on
the same SRLG (shared risk link group). Sherlock [6] is
an RCA system that learns a dependency graph between
multilevel resources in enterprise networks. Orion [7] extracts
the causal relationship among application traffic by analyzing
each traffic delay. eXpose [11] reveals flow generation rules
by learning the association rules of flows from packet trace
data while our objective is modeling and learning the patterns
of network log messages. NetMedic [12] monitors acts of
applications and conducts detailed diagnoses of fault events
occurring in enterprise. Meta [21] and TAR [22] are both fault
localization systems, which automatically learn fault events
from the event data sets and find the root causes of faults
rapidly by indexing the network events. However, they used
the network events data collected by the NMS, whereas our
scope is to extract such events from raw primitive log data.

Additionally, various studies that use router syslog and
SNMP messages have been done for large ISP networks.
NICE [16] extracts the statistical correlation between temporal
network events with time lags. G-RCA [27] is an RCA system
that identifies the root cause of the problem by matching a cur-
rent event to a predefined decision tree, which represents the
causal relationships of the network events. MERCURY [17]
and PRISM [18] detect maintenance induced performance
changes using change point analysis and PCA-based subspace
algorithm. SyslogDigest [19] is the most closely related work
to our research. It constructs digest information from router

3

TABLE I
EXAMPLES OF LOG MESSAGES

syslog

1 %LINK-3-UPDOWN: Interface FastEthernet 0/9, changed state to down
2 %SYS-5-CONFIG I: Configured from console by vty2 (10.11.XXX.YYY)
3 System: Interface ethernet XXX, state down

alarm

1 Interface down: IF: XXX IFIndex: YYY IFStatus: ZZZ
2 Node down: ping timeout (0 / 5)

TABLE II
EXAMPLES OF LOG TEMPLATES

syslog

1 %LINK-3-UPDOWN: Interface FastEthernet *, changed state to down
2 %SYS-5-CONFIG I: Configured from console by * (*)
3 System: Interface ethernet *, state down

alarm

1 Interface down: IF: * IFIndex: * IFStatus: *
2 Node down: ping timeout (* / *)

syslogs by extracting the templates of logs and grouping
them within relevant routers. Since they do not take into
account the fact that log data is a superposition of message
patterns, they require domain knowledge for extracting the
spatial relationship.

III. NETWORK LOG, TEMPLATE AND NETWORK EVENT

In this section, we explain an overview of network log data
and a preprocessing technique for modeling the patterns of log
messages, called STE. We then define the network events to
mathematically formulate the LTF problem.

Network logs such as router syslog and alarms captured
by NMS include various information: network faults, security
issues, and console logs. In general, they consist of three parts:
a timestamp, a host name (or IP address) and a message.
Examples of the message parts of network logs are given in
Table I. Although their format depends on the service type or
the vendor of each instrument, log messages consist of short
readable texts. Therefore, common structures can be found
among them; there are parts that represent event types or
entities (%LINK-3-UPDOWN and System), parts that show
changes of states (down/up), and parameter parts (IP address,
host name, and process ID).

A. Statistical Template Extraction

Because of the variety and large volume of logs, it is
unrealistic to extract patterns from raw log messages. For
example, we can easily find a strong correlation between
%LINK-3-UPDOWN events and %LINEPROTO-5-UPDOWN
events because layer 2 down/up events often induce layer
1 down/up events. However, to extract such a correlation,
we need a sufficient number of samples of layer 1 and 2
down/up event co-occurrence at the same interface and link.
Therefore, our objective here is to obtain correlation among
not raw log messages, but log templates, i.e. messages without
parameters. Examples of log templates are listed in Table. II,

where parameters are replaced by “*” and each log template
corresponds to the log message with the same ID in Table. I.

Although log templates may be obtained from vendor sup-
port pages or manuals, these templates may change due to
software updates or operational issues. In addition, some of
them may not be opened publicly. Therefore, we developed
a method of statistical template extraction (STE) from large
scale log messages without relying on any prior information
about log format. Log parsing technique has been reported in
other studies [19], [25]. Specifically, Qiu et al. [19] presented
the template extraction from router syslogs. They selected
a similar approach to the spam detection by constructing a
signature tree whose root is the message type of the log.
However, it is difficult to determine the root of the tree in the
case of general logs. Thus, STE takes another approach using
the following features of log messages: parameters appear less
frequently than template words; and messages have similar
structures with the positions of words, among those generated
from the same templates. STE consists of two parts: (1)
statistical word scoring and (2) score clustering.

1) Word scoring: We assume words are separated by white
space in each message. In general, template words tend to
appear in the same position in messages that have the same
words length. From this observation, we score the tendency of
words to be a template word as follows: if a word appears in
the p-th position in a log message that contains Len words,
then the score for the word is defined as

Score(word, p, Len) = P(word | p, Len).

From the above definition, the score for the template words is
greater than the parameters.

2) Score clustering: Next, we need to determine whether
word is a parameter or template word. A simple approach is
to set a threshold for the score; however, such an approach
would fail because the range of scores depends on the feature
space with the same (p, Len). To avoid this, we take a
clustering approach for scores and divide all the words in each
message into template words and parameters. The clustering
technique we use here is DBSCAN (Density Based Spatial
Clustering) [9], which makes clusters so that the distance
between clusters is greater than some threshold δ. We then
finally obtain a template by choosing the top clusters so that
the number of words is greater than β×Len, where 0 < β < 1.

B. Definition of Network Events

We now give the definition of network events using log
templates. This definition will be used for LTF formulation.
Observations of log data indicate that there is a log template
group that is likely to co-occur, and it represents the state
of individual network elements. Further, underlying network
events may cause log template groups to influence multiple
hosts (see Fig 1). Therefore, we consider such correlated log
messages with spatial impacts as network events. We first
define the log template group and then define the network
events. In what follows, we assume log templates for all log
messages are appropriately extracted and that all host names

4

and time stamps of log messages are also known. In addition,
we partition input log data by time-windows. Further, we write
i ∈ I, h ∈ H, and j ∈ J to represent templates, hosts, and
time-windows, where I, H, and J are the total sets of i, h,
and j, respectively.

Definition 1 (Template Group) A log template group l ∈ L
is defined as a set of templates that tends to co-occur at a single
host, where L represents the total set of template groups.

A template group represents an event at an individual host,
e.g., router reboot, link flap, or configuration change. Note
that for a fixed template, its multiple allocation to different
template groups is allowed. The reason for this is that some
template groups may be a subset of other template groups. For
instance, although link flap is a combination of link down and
up templates occurring at the same time-window, each link
down/up message can appear separately.

Definition 2 (Network Event) A network event e is defined
as tuple sets of a host and a template group that tend
to co-occur, i.e. e = {(h1, l1), (h2, l2), . . . } (h1, h2, · · · ∈
H, l1, l2, · · · ∈ L).

From the definition, network events are considered to be a
spatial extension of template groups. For example, with a link
flap, if a link flap occurs at some host, then similar log groups
appear at its neighbor hosts. Network events are described as
a mixture of such relationships and the template groups.

IV. LOG TENSOR FACTORIZATION

Our main contribution in this paper is modeling the the
patterns of network log messages and mathematically formu-
lating the extraction of network events from logs. The first
key idea for the event extraction is to regard network log data
as a rank-3 tensor (log templates, hosts, and time-windows),
and to extract template groups and host relationships that
are likely to co-occur in log data. On the basis of this
idea, we take a nonnegative tensor factorization approach,
in which we directly model and learn the template group
and the network events defined in Section III-B. Our tensor
factorization problem is closely related to NMF [14] and
NTF [8], which are powerful machine learning techniques for
decomposing a mixture component to nonnegative features. In
addition, they are widely applied to various areas such as audio
processing [20], text mining [23], image analysis [14] and
brain signal analysis [8]. However, these classical approaches
do not fit well to our problem because they cannot model both
the template groups and the spatial relationships (discussed in
detail in Section IV-B). Therefore, we developed a novel tensor
factorization, LTF, and derived simple update rules for it. We
first introduce a definition of tensor expression of logs.

Definition 3 (Log Tensor) For a log template i ∈ I, a host
h ∈ H, and a time-window j ∈ J , let xihj ∈ {0, 1, . . . }
denote the number of occurrences of a log message. A log
tensor X is defined as a rank-3 tensor with the dimension

Fig. 2. Concept image of LTF. The target tensor X is factorized into an
I ×L matrix V , an L×K ×H rank-3 tensor Z, and a K × J matrix W .

I ×H × J whose (i, h, j)-th element is xihj , where I = |I|,
H = |H| and J = |J |, respectively.

Our key insight for modeling the log is to regard log data in
each time-windows as a hierarchical superposition, i.e. log data
is a mixture of network events, which also consist of template
groups. According to this observation, we rewrite the network
event extraction problem from log data as the following tensor
factorization problem.

Problem (LTF: Log Tensor Factorization) For a given
tensor X with the dimension I×H×J and integers K and L,
the log tensor factorization problem is to find a factorization
such that

X ≃
K∑

k=1

[
L∑

l=1

vl ⊗ zlk

]
⊗wk, (1)

where for l = 1, . . . , L and k = 1, . . . ,K, vl = [vil],
zlk = [zlkh] and wk = [wkj] are nonnegative vectors with
the dimensions I , H , and J , respectively.

For convenience, we define an I×L matrix V as V = [vil],
an L×K ×H tensor Z as Z = [zlkh], and a K × J matrix
W as W = [wkj]. A conceptual image of LTF is shown in
Fig. 2. In what follows, we give intuitive interpretations for V ,
Z, and W . First, matrix V can be considered as a template
group matrix. A visualized image of V is shown in Fig. 3.
If a template i belongs to a template group l, then vil > 0,
and otherwise vil = 0, i.e., each vector vl corresponds to the
l-th template group, and L represents the number of template
groups. Second, rank-3 tensor Z can be regarded as a network
event tensor, and we call each H × L matrix zk an event
slice. A visualized image of Z is shown in Fig. 4. In each
event slice, if a template group l at host h belongs to the k-th
network event, then zlkh > 0. In other words, the k-th event
slice zk corresponds to k-th network events and K is equal to
the total number of network events. Finally, matrix W can be
considered as a weight matrix. Each element wkj represents
a weight that the k-th network event takes in time-window j.
In short, we can understand when the k-th network event has
occurred by observing wk.

Summarizing the above, we can interpret the LTF problem
as follows: (i) each vl corresponds to template groups; (ii) the
event slice zk represents the network events, i.e. which hosts

5

Fig. 3. Visualized image of matrix V . The l-th vector of V , vl, represents
in each element whether a template i belongs to a template group l or not.
In this example, there are spikes at templates A and C, thus, they belong to
the same template group.

Fig. 4. Visualized image of tensor Z. The k-th event slice of Z, zk , represents
k-th network events. If template group l at host h is the k-th network event,
then we can see zlkh > 0.

take a template group l; and (iii) X can be considered as a
superposition of event slices with weights {wk}.

A. Multiplicative Update Rules

We now develop an algorithm to calculate output tensors
of the LTF problem. As mentioned before, the LTF problem
is an extension of the NMF or NTF problems, which have
simple iteration algorithms for obtaining the solutions; these
algorithm are known as multiplicative update rules [8], [14].
On the basis of their derivation, despite the special features
of our model, we can derive very simple update rules for LTF
via an auxiliary function approach.

First, the LTF problem can be mathematically formulated
as the following minimization problem:

min
V ,Z,W

D(X∥V ,Z,W),

s.t. V ,Z,W ≥ O,
∑
i

vil = 1,
∑
l,h

zlkh = 1, (2)

where D(·) represents the KL-divergence function and serves
as a cost function. More specifically,

D(X∥V ,Z,W)

=
∑
i,h,j

xihj log
xihj∑

k,l vilzlkhwkj
− xihj +

∑
k,l

vilzlkhwkj .

(3)

Note that the second and third equalities in (2) are normaliza-
tion conditions. We then have the multiplicative update rules
for optimization problem (2) as follows: for i ∈ I, h ∈ H

and j ∈ J ,

vil :=

∑
h,j,k

z̆lkhw̆kj∑
k′,l′ v̆il′ z̆l′k′hw̆k′j

· xihj∑
h,j,k zlkhwkj

v̆il, (4)

zlkh :=

∑
i,j

v̆ilw̆kj∑
k′,l′ v̆il′ z̆l′k′hw̆k′j

· xihj∑
i,j vilwkj

z̆lkh, (5)

hkj :=

∑
i,h,l

v̆ilz̆lkh∑
k′,l′ v̆il′ z̆l′k′hw̆k′j

· xihj∑
i,h,l vilzlkh

w̆kj , (6)

where v̆il, z̆lkh, and w̆kj represent older values in each itera-
tion. After each update, it is necessary to normalize V and Z
with respect to the conditions in (2). We give complete proofs
for deriving (4)–(6) in the Appendix.

B. NTF and LTF

We here note the difference between the conventional NTF
problem and the LTF problem. Given a rank-3 tensor X , the
NTF problem is to find a factorization such that

X ≃
K∑

k=1

v′
k ⊗ z′

k ⊗w′
k,

where v′
k, z′

k, and w′
k are rank-1 tensors with the dimensions

I , H , and J , respectively. Intuitively, the NTF finds the
correlated patterns in the log tensor X and describes it with the
sum of the tensor product of K rank-1 tensors. In coordination
with the expression of the LTF, each v′

k⊗z′
k can be considered

as an insufficient expression of the network events: when we
interpret v′

k as a log template group, the corresponding tensor
product v′

k⊗z′
k represents that the k-th template group occurs

at the hosts in z′
k; however, this is different from Definition 2.

According to our observation, a certain log template group
may appear in different host groups; therefore, the number
of template groups and of network events should be different
(L < K, in general). Consequently, we can say that LTF is an
extension of the normal NTF in the sense that the NTF can
model only groups of a set <log template, host> that tend
to co-occur. By contrast, the LTF models the template groups
that appear in these groups.

C. Noise Filter

There are long running logs that induce spurious correla-
tions, such as the firewall logs. In addition, these logs increase
computational costs. Therefore, we apply a noise filter to the
data that remove sets of a host and a template that occur with
high frequency. We define the frequency for template i and
host h as a fraction of the time-windows in which a tuple (i, h)
is observed. Specifically, we choose 0.01 as the threshold in
our experiments described in Section V.

V. EVALUATION

In this section, we report our experimental validation of our
proposed method using real log data sets.

6

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1e-05 0.0001 0.001 0.01 0.1 1

#
 o

f
fa

il
e
d
 w

o
rd

s

δ

β = 0.70

β = 0.75

β = 0.80

Fig. 5. Comparison of the number of
false positive words.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 1e-05 0.0001 0.001 0.01 0.1 1

#
 o

f
te

m
p
la

te
s

δ

β = 0.70
β = 0.75
β = 0.80

Fig. 6. Comparison of the number of
extracted templates.

A. STE Evaluation

We first show the evaluation results for the template ex-
traction, STE. We used over 5 million lines of logs captured
in a certain small network. In this evaluation, we set two
metrics: accuracy and effectiveness. However, because of a
lack of ground truth, it was difficult to measure the accu-
racy. Therefore, we assumed the following two scenarios:
(i) calculate the number of false positive words, which are
words without numbers removed by STE; and (ii) calculate
the number of extracted templates. We observed that words
without numbers tend to be template words; however, they
may be template words such as a hostname and a path name,
e.g. /usr/local/path.

The result for (i) is shown in Fig. 5. The vertical axis
represents the number of false positive words. It is clear
from the graph that if parameter δ increases, STE removed
too many words. Since our data set include more than a
hundred of thousands of unique words, we can confirm that
our method has sufficient accuracy. Next, Fig. 6 shows the
result for scenario (ii). The graph shows that our template
extraction method can reduce the size of log data to less
than 1%. We can see that if δ or β increases, then the total
volume of templates also increases. This character of β is
obvious, because β determines the threshold for the number
of parameter words in each log messages. On the other hand,
if δ increases, then DBSCAN algorithm split words into less
clusters, hence, the number of templates decreases. Finally,
we choose β = 0.75 and δ = 0.01 as practical values in the
following all experiments by observing the output templates.

B. LTF Evaluation

1) Evaluation metrics: We first explain our evaluation
metrics. Our primary goal is to model the generative rules of
log data and network events and to extract meaningful events
for network operations. Therefore we set the following two
metrics: (i) the expressive power of LTF for real log data; and
(ii) the effectiveness of the outputs of LTF. To evaluate (i), we
selected a well-known quantitative measure, which evaluates
how we can predict non-zero elements in unknown log data
with a given input tensor. More specifically, we employ the
average log likelihood for the test set, which consists of non-
zero elements randomly chosen from the target data tensor
X . The predictions for the test set are calculated by the LTF
model that learned from X without chosen test data points.

-42

-40

-38

-36

-34

-32

-30

-28

-26

-24

 40 60 80 100 120

a
v
e
ra

g
e
 l
o
g
 l
ik

e
lih

o
o
d

K

NTF
LTF L=30
LTF L=50

Fig. 7. Comparison of the average
of test log likelihood with different K
and L values. Error bars represent the
95% confidence interval of a mean.

-45

-40

-35

-30

-25

-20

-15

 180 300 600 900

a
v
e
ra

g
e
 l
o
g
 l
ik

e
lih

o
o
d

time window size

NTF
LTF L=30
LTF L=50

Fig. 8. Comparison of the average
of test log likelihood with different L
and time-window sizes and K = 60.
Error bars represent the 95% confi-
dence interval of a mean.

The average log likelihood is then defined as

1

N

N∑
n=1

log p(xn; x̃n),

where p(·) is a Poisson distribution function, N is the number
of non-zero elements, and x̃n represents the prediction of each
element. Note that a higher average log likelihood indicates
better modeling of the data. For the validation of (ii), we
calculated the false positive rate of output template groups by
manual inspection. To obtain the false positive rate, we labeled
all template groups of LTF as ‘related’ or not by checking the
locations or protocols described in the messages. Note that we
do not check network events. This is because if the template
groups are accurately extracted, we can find the meanings of
the network events.

2) Comparison with NTF: In the first scenario of our
experiments, we verify that our model fits well to real data. We
choose the NTF as the baseline of our model. As we discussed
in Section IV-B, the LTF can be considered as an extension
of the NTF because the LTF extracts template groups and
network events at the same time. The input data we used here
is over 600,000 lines of 1-day log data from a certain network,
with the dimension roughly 100 (I)×150 (H)×150 (J). We
set the number of masked elements N to 5 and iterate 50
times for both parameter estimation and learning processes.
In Fig. 7, we show the average test log likelihood results of
the NTF and LTF with different K and L values. We can see
that the LTF achieves higher log likelihood than NTF for all
K and L values. This result indicates that the LTF model fits
better to the real data than the NTF model. We can also see
that the NTF achieves the highest value when parameter K is
80, and if K turns away from 80, its log likelihood decreases.
The reason for this can be considered as follows: if K is less
than the proper value (K = 80 in this case), the NTF fails
to sufficiently model the input data, and if K is higher than
the proper value of K, then they over-fit the test data and can
not predict the removed entries. On the other hand, the LTF
takes higher values when K > 80. This is because the LTF
expresses the log data with L template groups, whereas the
NTF expresses the log data with K the rank-1 tensors. This
fact means that there certainly exist template groups that tend
to co-occur, and our modeling is valid for the real data.

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 180 300 600 900

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

time window size

L = 20
L = 30
L = 50

Fig. 9. The FPR with different time-
window sizes and L’s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

K

Fig. 10. The FPR with different K’s
and fixed time-window size and L.

Next, Fig. 8 shows the impact of the time-window size
on the average log likelihood. We also can see that the LTF
achieves better results than the NTF in all time-windows. In
particular, when the time-window size is 180 sec. (= 3 min.),
the average log likelihood is the highest. This fact means that
most of the network events tend to occur within 3 min. The
graph also shows that if the time-window size is greater than
180, then the average log likelihood decreases. The reason
for this fact is that when the time-window is too large, each
time-window may contain irrelevant network events.

3) False positive template groups: In the second experi-
ment, we confirmed that LTF could efficiently output accurate
information from the network operators’ viewpoints. We used
the same input data as in the previous experiment. Due to
the lack of ground truth data, we calculated the false positive
rates (FPR) of LTF outputs by manually checking all template
groups whether they were ’related’ or not. Fig. 9 shows FPR
with different time-window sizes and L, where K was fixed
at 60. Clearly, approximately 80–90% of the outputs of LTF
can be considered to be meaningful events. We can also see
that time-window sizes larger than 300 sec. result in larger
FPR, except for the case of L = 50. The reason for this is
similar to the case of evaluating the average log likelihood with
different time-window sizes. The case in which only L = 50
has a different tendency can be explained as follows: when L
is too large, the LTF outputs more redundant template groups,
i.e. it over-fits the input data. In Fig. 10, we show the FPR
with different values of K where L and the time-window size
are fixed at 30 and 5 min., respectively. We can observe that
the value K does not have much effect on L. This fact means
that the number of template groups are selected independently
with the number of network events. This character is also seen
in Fig. 7.

VI. CASE STUDY

In this section, we present several interesting network events
obtained by the LTF as case studies. We conducted an LTF
experiment to one week of log data of a certain large scale net-
work where tens of thousands of hosts are working. The input
data include daily maintenance, temporally abnormal logs and
even critical network faults. Since our dataset was large, we
split it into independent host groups that are considered to be
related, in order to avoid computational costs. As our primary
implementation, we can finish each experiment of a one-week

tensor with the dimensions of about 100×100×1000 roughly
within a day. LTF can be easily applied to parallel processing
by splitting the inputs, therefore the performance of LTF can
be considered to be sufficient for an event extraction purpose.
We selected appropriate parameters K and L for each input,
and we fixed the time-window size at 5 min.

A. Case: Self-generating Events

Although one of our objectives is to find relationships
between multiple hosts, there are self-generating events that
only appear at a single host and do not have any influence
on other hosts. Table III lists the examples of them. The first
example is a simple user login event, which is a very common
event in the daily network operation. We can confirm that
even if a template group contains only one element (template),
the proposed method was able to extract it accurately, by
observing that the corresponding weight value is 1.0. The
second example is a fan speed-up event at a certain host. This
type of event can be found on some other hosts and is not
related to alarms, thus, operators do not pay much attention
to them. By observing the raw log messages, we can see that
the time intervals between each messages of this events are
approximately 3–5 minutes. As as result, the time-window
size should be more than 180 sec. to capture this event. It
is understood that the router fan speed-up implies an increase
in the temperature, which may cause an unintended shutdown
of components. Thus, even if it does not directly relate to a
complete fault, we believe that this template group is important
for the daily operation. The third example is an administrative
link down event, which does not have any influence on other
hosts. This is because the neighboring nodes are outside of
their monitoring area, and thus log data are not collected. We
can also see that even this simple link down event has three
log templates because of protocol interaction.

B. Case: Neighboring Nodes Flap Event

One of the interesting outputs of LTF is a network event
with a neighbor relationship. An example is presented in
Table IV. This example shows that an interface flap has
occurred at the CoreRouterA, and then a related interface and
link flap has occurred at its neighbor EdgeRouterB. As we
mentioned in Section IV-B, it can be seen that these neigh-
boring interface events result in different template groups.
Further, in EdgeRouterB’s flap event, we can see that the
layer 1 protocol flap induces layer 2 protocol flap. We note
that link flap events are common in real network, because they
are caused by typical operations including adding new ports or
reloading modules. Thus, they do not always represent critical
faults, which would have an impact on users’ experience.
However, it is also known that link flaps may occur before
nodes completely down. Therefore, we can find importance in
extracting and identifying such temporally abnormal events.
We also note that the LTF can extract the complete link down
event separately with this link flap event.

8

TABLE III
EXAMPLES OF SELF-GENERATING NETWORK EVENTS (ONLY TEMPLATE GROUPS ARE SHOWN)

Weights Templates

1 1.0 login : LOGIN INFORMATION : User * logged in from host * on device *

2 0.5 chassisd [*] : CHASSISD BLOWERS SPEED : Fans and impellers are now running at normal speed
0.5 chassisd [*] : CHASSISD BLOWERS SPEED FULL : Fans and impellers being set to full speed [system warm]

0.33 * : TIME : %LINK-5-CHANGED : Interface * , changed state to administratively down
3 0.33 * : * : %LINK-3-UPDOWN : Interface * , changed state to down

0.33 * : TIME : %LINK-3-UPDOWN : SIP * : Interface * , changed state to down

TABLE IV
NEIGHBORING LINK FLAP EVENT

Host Name TG Weights Weights Templates

0.4 TIME : ifmgr [*] : %PKT INFRA-LINK-3-UPDOWN : Interface * , changed state to Up
CoreRouterA 0.666 0.4 TIME : ifmgr [*] : %PKT INFRA-LINK-3-UPDOWN : Interface * , changed state to Down

0.2 TIME : %SYS-3-LOGGER DROPPED : System dropped * console debug messages.

0.4 * : * : %LINK-3-UPDOWN : Interface * , changed state to up
0.17 * : TIME : %LINK-3-UPDOWN : Interface * , changed state to administratively down

EdgeRouterB 0.333 0.17 * : * : %LINEPROTO-5-UPDOWN : Line protocol on Interface * , changed state to up
0.17 * : * : %LINEPROTO-5-UPDOWN : Line protocol on Interface * , changed state to down
0.05 * : * : %LINK-3-UPDOWN : Interface * , changed state to down

C. Case: Tunneling Disconnection Event

The final case we present is a network event with tunneling
relationships. In this example, network operators did not
notice the spacial impact of the network event because of the
complexity of it. In general, tunneling or virtual path protocols
are widely accepted in existing networks. However, they are
difficult to maintain because virtual paths change from hour to
hour. In Table V, we show an example of a tunneling network
event. First, according to network operators, the template
group of CoreRouter indicates a module reload event, due
to the module error. Since this reload event includes a lot
of templates, we can see that the corresponding weight given
to each template in the template group is low. Second, virtual
path disconnections are caused at EdgeRouters C and D. Since
the CoreRouter has more than a hundred connections with
other hosts, the corresponding weight given to the template
group is low (less than 0.02). From the observation of the raw
data, we found that there was a pattern of the template group
that occurred periodically at the CoreRouter, and they were
information for debugging generated by a certain periodic job.
Since a number of these log messages appeared during the
duration of the event (approximately 5 minutes), it was difficult
to find this module reload and tunneling disconnection event.
Further, the volume of not only the other events, but also of
the virtual path disconnection messages was large. Thus, they
also became an obstacle to identify the network event. As a
result, the LTF can accurately extract a complex network event
when it is difficult to identify from the raw log data.

VII. CONCLUSION

In this paper, we proposed a spatio-temporal factoriza-
tion method, which automatically learns underlying network
events from unstructured and complex log data. To overcome

the complexity of log messages, we developed a statistical
template extraction method, STE. Using log templates, we
mathematically modeled the patterns of network logs. To
formulate spatial and temporal patterns of log messages, we
developed a novel tensor factorization technique, LTF. We
verified that our model fits well to real data and also showed
several case studies in which the proposed methods can extract
various useful network events for the network operation.

Understanding the spatial-temporal patterns of log messages
provides useful insights into various network operations. As-
sociating learned network events with NMSs enables us to
monitor both normal and abnormal events with their spatial
impacts even though such relationships are difficult to maintain
as in the example of Table V. The extracted information can be
used for preventive maintenance operation, such as a link flap
event or a fan speed-up event. In addition, by learning normal
network events, LTF can detect the abnormal log group or
network events that cannot be expressed as a superposition
of learned network events in the past. For example, a router
reboot event causes various logs such as process initialization.
With the network events learned by the LTF, we can detect that
certain process did not start because in such cases, the cost
function increases. This is an interesting application, because
a typical anomaly detection system with threshold monitoring
fails to detect the event.

ACKNOWLEDGMENT

The authors would like to thank to Masayasu Miyazaki for
helping in the experiments.

APPENDIX:UPDATE RULE DERIVATION

In what follows, we derive only the update rule for V . The
cases of Z and W can be derived in the same way. Thus, we

9

TABLE V
TUNNELING PATH DISCONNECTION EVENT

Host Name TG Weights Template Weights Templates

0.4375 SNMP Trap: a status change for a module. Software image for the module is missing or invalid....
0.0833 os: loader: * for * is *

CoreRouter 0.0253 0.0833 id of requester is *
0.0833 OsCrashDump: invalid crash record skipped, ...

...
...

EdgeRouterC 0.01656 0.92805 Tunneling Virtual Path * is disconnected, hardware unavailable.

EdgeRouterD 0.01594 0.98308 Tunneling Virtual Path * is disconnected, hardware unavailable.
...

...
...

...

omit them. We define the auxiliary function D+(·) as

D+(X∥V ,Z,W ,R)

=
∑
i,h,j

∑
k,l

−rihjlkxihj log
vlizlkhwkj

rihjlk

+ vlizlkhwkj + xihj log xihj − xihj , (7)

where rihjlk is a nonnegative variable such that∑
i,j,h,l,k rihjlk = 1 and R denotes a total set of rihjlk. Due

to Jensen’s inequality and the convexity of the log function,
we obtain for any rihjlk,

log
∑
k,l

rihjlk
vlizlkhwkj

rihjlk
≥

∑
k,l

rihjlk log
vlizlkhwkj

rihjlk
,

from which, (3) and (7), it follows that D(X∥V ,Z,W) ≤
D+(X∥V ,Z,W ,R), where the equality attained if and only
if vlizlkhwkj/rihjlk is the same for all l, k, i.e.,

rihjlk =
vlizlkhwkj∑

k′,l′ vl′izl′k′hwk′j
. (8)

Next, we minimize D(X∥V ,Z,W) by V . Substituting (8)
into (7) yields

D+(X∥V ,Z,W , V̆ , Z̆, W̆)

=
∑
i,h,j

∑
k,l

v̆liz̆lkhw̆kj∑
k′,l′ v̆l′iz̆l′k′mw̆k′j

· xihj

×

[
log

v̆liz̆lkhw̆kj∑
k′,l′ v̆l′iz̆l′k′hw̆k′j

− log vlizlkhwkj

]
+xihj log xihj − xihj + vlizlkhwkj .

Finally, differentiating the above equation by vli and substi-
tuting 0 into both sides leads to (4). 2

REFERENCES

[1] CA Spectrum. http://www.ca.com/us/root-cause-analysis.aspx.
[2] EMC ionix platform. http://www.emc.com/products/family/ionix-family.

htm.
[3] HP Software. http://www8.hp.com/us/en/software/enterprise-software.

html.
[4] IBM Tivoli. http://www-01.ibm.com/software/tivoli/.
[5] Splunk. http://www.splunk.com/.
[6] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and

M. Zhang, Towards Highly Reliable Enterprise Network Services via
Inference of Multi-level Dependencies, In Proc. of SIGCOMM, 2007.

[7] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, Automating Network
Application Dependency Discovery: Experiences, Limitations, and New
Solutions, In Proc. of OSDI, 2008.

[8] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari. Nonnegative Matrix
and Tensor Factorizations: Applications to Exploratory Multi-way Data
Analysis and Blind Source Separation. Wiley. 2009.

[9] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise, In Proc.
of KDD, 1996.

[10] S. Kandula, D. Katabi, and J. P. Vasseur, Shrink: a Tool for Failure
Diagnosis in IP Networks, In MineNet, 2005.

[11] S. Kandula, R. Chandra, and D. Katabi, What’s Going on? Learning
Communication Rules in Edge Networks, In Proc. of SIGCOMM, 2008.

[12] S. Kandura, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl,
Detailed Diagnosis in Enterprise Networks, In Proc. of SIGCOMM, 2009.

[13] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, IP Fault
Localization via Risk Modeling, In Proc. of NSDI, 2005.

[14] D. D. Lee and H. S. Seung, Learning the Parts of Objects by Non-
Negative Matrix Factorization, Nature, 401, pp.788–791, 1999.

[15] D. D. Lee and H. S. Seung, Algorithms for Non-negative Matrix
Factorization, In Proc. of NIPS, 2000.

[16] A. Mahimkar, J. Yates, Y. Zhang, A. Shaikh, J. Wang, Z. Ge, and
C. T. Ee, Troubleshooting Chronic Conditions in Large IP Networks,
In Proc. of CoNEXT, 2008.

[17] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang,
and J. Emmons Detecting the Performance Impact of Upgrades in Large
Operational Networks, In Proc. of SIGCOMM, 2010.

[18] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons, B. Hunt-
ley, and M. Stockert, Rapid Detection of Maintenance Induced Changes
in Service Performance, In Proc. of CoNEXT, 2011.

[19] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, What Happened in my
Network? Mining Network Events from Router Syslogs, In Proc. of IMC,
2010.

[20] P. Smaragdis and J. C. Brown, Non-negative Matrix Factorization for
Polyphonic Music Transcription, In Proc. of WASPA, 2003.

[21] T. Wang, M. Srivatsa, D. Agrawal, and L. Liu, Learning, Indexing, and
Diagnosing Network Faults, In Proc. of KDD, 2009.

[22] T. Wang, M. Srivatsa, D. Agrawal, and L. Liu, Spatio-temporal Patterns
in Network Events, In Proc. of CoNEXT, 2010.

[23] W. Xu, X. Liu and Y. Gong, Document Clustering Based on Non-
negative Matrix Factorization. In Proc. of SIAM, 20111.

[24] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, Mining
Console Logs for Large-Scale System Problem Detection, In Proc. of
SysML, 2008.

[25] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, Detecting
Large-Scale System Problems by Mining Console Logs, In Proc. of SOSP,
2009.

[26] K. Yamanishi and M. Maruyama. Dynamic Syslog Mining for Network
Failure Monitoring, In Proc. of KDD, 2005.

[27] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates, G-RCA: a
Generic Root Cause Analysis Platform for Service Quality Management
in Large IP Networks, In Proc. of CoNEXT, 2010.

