
SFMap: Inferring Services over Encrypted Web
Flows Using Dynamical Domain Name Graphs

Tatsuya Mori1(B), Takeru Inoue2, Akihiro Shimoda3, Kazumichi Sato3,
Keisuke Ishibashi3, and Shigeki Goto1

1 Department of Computer Science and Communications Engineering,
Waseda University, Tokyo, Japan

mori@nsl.cs.waseda.ac.jp
2 NTT Network Innovation Laboratories, NTT Corporation, Tokyo, Japan
3 NTT Network Technology Laboratories, NTT Corporation,Tokyo, Japan

Abstract. Most modern Internet services are carried over the web. A sig-
nificant amount of web transactions is now encrypted and the transition to
encryption has made it difficult for network operators to understand traffic
mix.Thegoal of this study is to enablenetworkoperators to inferhostnames
within HTTPS traffic because hostname information is useful to under-
stand the breakdown of encrypted web traffic. The proposed approach cor-
relates HTTPS flows and DNS queries/responses. Although this approach
may appear trivial, recent deployment and implementation of DNS ecosys-
tems have made it a challenging research problem; i.e., canonical name
tricks used by CDNs, the dynamic and diverse nature of DNS TTL set-
tings, and incompletemeasurements due to the existence of various caching
mechanisms. To tackle these challenges, we introduce domain name graph
(DNG), which is a formal expression that characterizes the highly dynamic
and diverse nature of DNS mechanisms. Furthermore, we have developed
a framework called Service-Flow map (SFMap) that works on top of the
DNG. SFMap statistically estimates the hostname of an HTTPS server,
given a pair of client and server IP addresses. We evaluate the performance
of SFMap through extensive analysis using real packet traces collected from
two locationswithdifferent scales.Wedemonstrate thatSFMapestablishes
good estimation accuracies and outperforms a state-of-the-art approach.

1 Introduction

Background:
Monitoring and understanding traffic mix is crucial for network operators. Port
number conventions and deep packet inspection (DPI) are widely used to under-
stand the breakdown of traffic mix. However, these techniques have become less
effective for the following reasons. First, the majority of modern services, such as
social networking service, video, andmessaging services, are all performed overweb
traffic [9], and port number information is too coarse-grained to distinguish such
services from each other. Second, the encryption of communication channels has
disabled inspection ofHTTPheaders,which includeuseful information such as uni-
form resource identifiers (URIs). Modern protocols for accelerating the web such
c© IFIP International Federation for Information Processing 2015
M. Steiner et al. (Eds.): TMA 2015, LNCS 9053, pp. 126–139, 2015.
DOI: 10.1007/978-3-319-17172-2 9

SFMap: Inferring Services Over Encrypted Web Flows 127

s1 m1 n1m2

Fig. 1. Example of a CNAME chain

1 10 100 1000 10000 100000 1000000
TTL values (seconds)

0

0.2

0.4

0.6

0.8

1

C
D

F

A records
CNAME records

Fig. 2. CDFs of TTL values

s1

m1

n1

s1

m1

n1

n2

1: n1 s1

: n2 s2

s2

Fig. 3. An example of CNAME ambiguity

as SPDY and Websocket employ mandatory encryption of HTTP with SSL/TLS
(secure socket layer/transport layer security), i.e.,HTTPS.Naylor et al. [7] recently
reported that fraction of HTTPS traffic volume measured at a large-scale ISP has
significantly increased over these 2+ years (from April 2012 to July 2014). They
also found that their meausrement study suggests that cost of deploying HTTPS
is decreasing. Hence, the increasing adoption of HTTPS brings new research chal-
lenges to traffic classification problems [2,5]1.

Goal and Challenges:
Based on the aforementioned information, this work aims to enable network opera-
tors to infer thehostnamesofHTTPStraffic.Hostnameinformation isuseful fornet-
work operators to understand what types of services are carried over HTTPS flows.
Although the IP address property of an HTTPS server may reveal that the server
is used by a particular company such as Google, this information often fails to pro-
vide us with information about the services that are used over the flow, such as web
searches, blogs, and videos. Such services are associated with distinct hostnames
such as www.google.com, www.blogspot.com, and www.youtube.com. Bermudez
et al. [2] revealed that simple reverse DNS lookup does not return accurate domain

1 We note that server name indication (SNI) extention of TLS can be used to obtain
hostname of HTTPS server. However, there are many client/server implementations
that do not adopt SNI. In fact, in our dataset, roughly half of HTTPS clients did not
use the SNI extention.

www.google.com
www.blogspot.com
www.youtube.com

128 T. Mori et al.

informationusedbyHTTPS servers.Thus, to understand the trafficmix ofHTTPS
flows, we need to infer server hostnames.

The main idea of our approach is to correlate HTTPS flows and DNS
queries/responses.Thebasicassumption is thatprior to requestinganHTTPSflow,
a web application should resolve the IP address of the HTTPS server by querying a
DNSquery.Therefore,bymonitoringpriorDNSqueries/responses,wecanestimate
thehostnamethat is associatedwith IPaddress of theHTTPSserver.Although this
approach might look trivial, there are three practical challenges.
(Challenge 1) Canonical name (CNAME) tricks used by CDNs

First, modern CDN providers leverage CNAME tricks to accelerate the effi-
ciency of content delivery [10]. Figure 1 shows an example of a CNAME chain used
by a CDN provider. Here, assume that we know that the IP address of an observed
HTTPS server is s1 = 23.2.132.181. Now, our task is to associate s1 with the origi-
nal hostname, n1 = www.ieee.org. However, as is shown in Fig. 1, n1 is not directly
resolved to s1 due to the existence of the CNAME chain. Using this chain structure,
a CDN provider can provide the optimal server IP address s1 to serve the content of
n1 to client c1. Thus, to associate s1 and n1, we need to keep track of the CNAME
chain, which exhibits dynamic and complex behavior as we shall see soon.
(Challenge 2) Incomplete measurements

ADNS record canbe cachedby severalmechanisms such as localDNS resolvers,
DNS caching within operating systems, and DNS caching within applications such
as web browsers. The implementations of these caching mechanisms are diverse.
Some recent implementations used in web browsers store DNS records aggressively
to improve response time, thereby ignoring DNS TTL settings [4]. Even though
such implementations violate the rule of DNS TTL, they can work because even if a
selected server IP address is no longer an optimal one, the server IP address gener-
ally continues to be valid.Thus, due to the standard and illicit cachingmechanisms,
a DNS query, which should have appeared prior to an HTTP request, is often invis-
ible. The absence of DNS queries suggests that we require estimation techniques to
recover incomplete measurements.
(Challenge 3) Dynamicity, diversity, and ambiguity

Everyhostnameused inDNS is assigned a time-to-live (TTL),whichdefines the
lifetime of the hostname within a stub DNS resolver. If the hostname is not queried
again before the TTL has expired, the DNS record of the hostname will be removed
froma stubDNS resolver. In general, the hostnames in aCNAMEchain have differ-
ent TTL values. Figure 2 presents an example of cumulative distributive function
(CDF)ofTTLvalues forhostnames thatare resolved to IPaddresses (Arecord)and
hostnames that are resolved toCNAMEs (CNAMErecord).Note that the datawas
taken from a mid-sized production network, and the characteristics of CDF were
the same for other dataset. The graph clearly shows that A record hostnames have
shorter TTLs than CNAME hostnames. For example, more than 50% of A record
hostnames have TTL values that are less than 60 seconds. This indicates that the
association between hostnames and IP addresses is highly dynamic. These host-
names have shorter TTLs because CDN providers tend to control traffic at a fine
granularity [4].

SFMap: Inferring Services Over Encrypted Web Flows 129

The diversity of TTL values and DNS caching mechanisms leads to ambiguity
of CNAME association behavior. We illustrate an actual sample in Fig. 3, which
presents DNS resolutions for a client, c1. The first observation generates the rela-
tionship between s1 andn1 for client c1. The second observation generates the rela-
tionship between s2 and n2 for client c1. Now, assume an estimation problem. If
we observe the pair (c1, s1), which hostname should it be associated with? If we
simply keep the relationships shown above, the answer is n1. However, due to the
existence of intermediate CNAME node m1, the actual answer is n2 because m1
is now associated with s2 by a query of n2, and n1 is associated with m1 due to a
caching mechanism. Note that this behavior depends on the implementation of the
stub DNS resolver used by the client c1. If the implementation ignores intermedi-
ate CNAME nodes, the answer could ben1. Thus, there is an intrinsic ambiguity in
CNAME associations.

Contributions:
In this work, we present a novel methodology that aims to infer the hostnames of
HTTPS flows, given the three research challenges shown above. The key contribu-
tions of this work are summarized as follows.

– We present domain name graph (DNG), which is a formal expression that can
keep track of CNAME chains (Challenge 1) and characterize the dynamic and
diverse nature of DNS mechanisms and deployments (Challenge 3).

– We develop a framework called Service-Flow map (SFMap) that works on top
of theDNG. SFMap estimates the hostname of anHTTPS server given a pair of
client and server IP addresses. It can statistically estimate the hostname even
when associating DNS queries are unobserved due to caching mechanisms, etc.
(Challenge 2).

– Through extensive analysis using real packet traces, we validate the perfor-
mance of SFMap in terms of accuracy and resource consumption.

The remainder of this paper is organized as follows. Section 2 summarizes the
relatedwork.Section3describes theproposedSFMap framework indetail.Weeval-
uate the performance of SFMap in Section 4. Section 5 discusses the limitations of
SFMap and future research directions. We conclude our work in Section 6.

2 RelatedWork

Many studies have examined the Internet traffic classification problem.Ref. [3] lists
68 studies on the topic. Here, we focus our attention on the studies that make use
of DNS information to the traffic classification problem [2,6,8]. Mori et al. [6] pro-
posedamethodto identify trafficoriginating fromlarge-scalevideo-sharingservices
such asYouTube.The key ideawas to extract the rules of IP address numbering and
naming conventions of fully qualified domain names (FQDNs) used for the services.
Although their approach may work for a limited scope, it cannot be used to solve
more generic web traffic classification problems. Plonka et al. [8] presented a traffic
classification method that uses DNS traffic. They developed a method that stores

130 T. Mori et al.

per client DNS rendezvous state information in a tree-like data structure. Although
their results demonstrated that the DNS rendezvous-based method performs well,
even for encrypted traffic, their goal was different from ours because they assumed
that DNS traffic implies the ground truth. In contrast, our goal is to estimate the
hostnamesofHTTPStraffic fromtheobservationsofDNStraffic.Bermudezetal.[2]
developed a framework called DN-Hunter, which aims to classify traffic flows using
DNS traffic.DN-Hunter uses aFIFO(first-in first-out) circular list to store the rela-
tionships among FQDN information and client-server pairs. Since the scope of DN-
Hunter is mostly similar to ours, this work compares the performance of SFMap
with DN-Hunter.

3 SFMapFramework

This section describes SFMap in detail. Section 3.1 presents the overview of the
SFMap framework. Section 3.2 describes DNG, which is a key component of the
SFMap framework. Section 3.3 details how SFMap estimates hostnames. Lastly,
Section 3.4 explains how SFMap updates DNG and statistics that are used for the
estimation.

3.1 Overview

Thegoal of SFMap is to infer ahostnamenof anHTTPSflowbyassociatingpreced-
ing DNS responses with a flow key, which is defined with a pair of server IP address
s and client IP address c. To this end, SFMap needs to address the research chal-
lenges discussed in Section 1. To tackle the research challenges, the SFMap frame-
work works on top of DNG, which will be detailed in the next subsection. A DNG
keeps track of the structure of DNS records; thus, it can deal with CNAME chains
(Challenge 1).Next, by relaxing the constraints of theDNG, the SFMap framework
can handle cases wherein there are no preceding DNS responses that are associated
with the client-server pair (challenge 2).Thedetails of the hostname estimationwill
be described in Section 3.3. Finally, by adequately maintaining the DNG and using
the observed TTL values, the SFMap framework can deal with the dynamic nature
of DNS mechanisms (Challenge 3). The updating mechanism for the DNG will be
discussed in Section 3.4.

Figure 4 summarizes the components of the SFMap framework. SFMap has
threemain functions, i.e., Learner,Estimator, andUpdater. Learner consists of two
components: the DNG and the Frequency counter. Learner component reads DNS
queries/responsesandbuildsandkeepstheDNGandFrequencycounter.Estimator
performs host estimation; i.e., given a pair of client-server IP addresses (c, s) for an
HTTPS flow, estimator returns the most plausible hostname(s) using the informa-
tion collected from DNG and Frequency counters. Updater reads DNS queries/re-
sponses and updates the status of the DNG and the Frequency counter.

Given these primitives, our problem can be formulated as maximum likelihood
estimation (MLE)under the constraints of aDNG.Given cand s in anHTTPSflow,

SFMap: Inferring Services Over Encrypted Web Flows 131

{s, c}

n

Fig. 4. Components of SFMap

the MLE is formulated as follows.

n̂(c, s) = argmax
n∈N

Pr(n, c, s) (1)

s.t. N = {n ∈ Vc : n →
Gc

s}, (2)

where Gc = (Vc, Ec) denotes a DNG built for c, and binary operator x →
G

y repre-

sentswhethervertexxcanreachtovertexy ongraphG. In the following,wedescribe
how we build and update Gc, how we extract N , how we compute the likelihood
probability Pr(n, c, s), and how we get the final estimation n̂.

3.2 DNG

A DNG, Gc, is a directed graph used to keep A and CNAME records observed in
DNS responses queried by client c. DNGs can be built separately for each client
c. A vertex, v ∈ Vc, is a server IP address or a hostname, while an edge, e ∈ Ec,
represents an A or CNAME record that links a vertex to another vertex. Each edge
is grafted by a correspondingAor CNAMErecord observed in aDNS response, and
is associated with its expire time determined by observed TTL. If an edge, e ∈ Ec,
is expired, it will be removed from Gc.

Here, we examine how the DNG expression naturally represents the behavior
of DNS resolution. Assume that clients obtain a server address via DNS responses
only and that we have never missed any DNS response for the clients; i.e., DNGGc

represents all name resolutions requested by a client c. When a client c sends an
HTTP request to a server n, the server n’s IP address s should have been resolved
by DNS. This association of n and s obtained through the DNS mechanism can be
expressed as a path from n to s on the DNGGc. Note that there are cases where we
cannot find such a path due to the caching mechanisms. In such cases, we need to
employ several techniques that will be described soon.

3.3 Estimator

In the estimation phase,wemust first select candidate hostnames that are likely the
original hostname for a given client-server pair (c, s). We extract a set of candidate

132 T. Mori et al.

hostnamesN fromDNGGc, usingEq. 2. If |N | ≥ 1,we estimate the hostname with
theMLEshown inEq. 1.Amethod to calculate the likelihoodprobabilityPr(n, c, s)
will be shown later.

As we mentioned in Section 1, N can be an empty set due to the standard
and illicit DNS caching mechanisms. In such cases, we cannot directly associate
an HTTPS flow with preceding DNS responses. To deal with these cases, SFMap
extends the candidate hostnames by relaxing the constraint of edge expiration.
This relaxation enables us to select hostnames that are missed due to the existence
of DNS clients that ignore DNS TTL for improving the user experience. Now, N
is obtained as

N = {n ∈ Vc : n →̃
Gc

s}, (3)

where G̃c = (Vc, Ẽc) and Ẽc include both valid and expired edges.
Finally, ifwedonothaveanycandidatehostnamesat this stage,weuse theunion

of all clients’ DNGs (union DNG). In other words, we use the observations of other
clients as a hint to estimate the most plausible hostname. Let C denote a set of all
clients. The union DNG is defined as G = (V =

⋃
c∈C Vc, E =

⋃
c∈C Ec). Using

the union DNG G, the candidate hostnames can be selected as

N = {n ∈ V : n →
G

s}. (4)

It then estimates the hostname with the following MLE formulation:

n̂ = argmax
n∈N

Pr(n, s). (5)

Like Eq. 3, we can further relax the constraint of expiration for the union DNG G;
i.e.,

N = {n ∈ V : n →̃
G

s}, (6)

where G̃ = (V, Ẽ) and Ẽ include both valid and expired edges.
To recap, the Estimator runs the combinations below from top to bottom in

a step-by-step manner until a plausible hostname is found. For future reference,
we give names to these steps, where LE and UE refer to Local and Union Estima-
tors, andNTErefers to “NoTTLExpiration”. For instance, the estimatorLE-NTE
(Local Estimator with No TTL Expiration) starts with the first step and continues
to the second step until at least one candidate hostname is found, but will not pro-
ceedtothethirdandfourthsteps.Wewill examinetheaccuraciesof theseestimators
to study the factors that contribute to improve the estimation accuracies.

Step MLE constraint Name
1st Eq. (1) Eq. (2) LE
2nd Eq. (1) Eq. (3) LE-NTE
3rd Eq. (5) Eq. (4) UE
4th Eq. (5) Eq. (6) UE-NTE

SFMap: Inferring Services Over Encrypted Web Flows 133

Finally, we note the time complexity of the Union Estimators. In the Union
DNG, a single-source path search from s with reverse edges requires O(|E|) on a
directed acyclic graphwith topological sort, and frequency lookups are executed for
n ∈ N ⊆ V . Therefore, the time complexity of Union Estimators is O(|V | + |E|).
However, we empirically revealed that the actual mean time complexity is much
smaller than this worst-case upper bound, and is close to O(|Vc| + |Ec|) because
majority of hostnames can be estimated with LE and LE-NTE as we shall show in
Section 4. The details are omitted due to the space limitation.

Calculationof theLikelihoodProbabilities. Tocalculate the likelihoodprob-
abilities, we make use of empirical data. Let Fc(n, s) denote the frequency of DNS
messages queried by client c for hostnamenwith resolved address s. UsingFc(n, s),
Eq. 1 can be calculated as

argmax
n∈N

Pr(n, c, s) = argmax
n∈N

Fc(n, s).

Similarly, Eq. 5 can be calculated as

argmax
n∈N

Pr(n, s) = argmax
n∈N

F (n, s),

whereF (n, s) =
∑

c∈C Fc(n, s).Themethod toupdate the frequencywill be shown
in the next subsection.

3.4 Updater

The Updater updates DNG Gc and frequency Fc when it receives a DNS response.
A DNS response is associated with client c and queried hostname n�. The response
also includes a set of A records and another set of CNAME records. Let these sets
be A and M , respectively. An A record associates hostname n and server address
s, while a CNAME record associates two hostnames n′ and n. Let these records be
(n, s) ∈ A and (n′, n) ∈ M , respectively.

Due to the existenceof shortTTLvalue set for anArecord, a client often resolves
an intermediate hostname (i.e., CNAME) instead of the original one. In such a case,
the frequency of an original hostname is undervalued. To cope with such a case,
SFMap increments the frequencies of all original hostnames that can reach to the
queried hostname. Let a set of edges be Ec = {(n′′, n), (n′, n), (n, s)}, where n is
a CNAME of n′′ or n′. If n� = n is queried, the Updater increments Fc(n′′, s) and
Fc(n′, s), instead of Fc(n, s). Note that we assume that original hostnames should
be leaf vertices on a DNG (a leaf is a vertex without incoming edge). In fact, more
than 99.7% of requested hostnames are leaf vertices in our observations.

Algorithm 1 presents an algorithm that updates Gc and Fc upon receiving a
DNS response, (c, n�, A,M). We discount the incremental value by the number of
(n′, s) pairs at Line 7, because the algorithm incrementsFc for all n′ ∈ V reachable
to n� and for all s in A. At Line 3, we update the expiration time of edge (u, v). In
addition to Algorithm 1, the Updater periodically checks the TTL expiration for

134 T. Mori et al.

Algorithm 1. Updater
Input: c, n�, A, M // DNS response

1 for (u, v) ∈ A ∪ M do
2 Ec = Ec ∪ {(u, v)} // to add edge

3 update expire time of edge (u, v)

4 N ′ = {n′ ∈ Vc : (∗, n′) �∈ Ec, n
′ →

Gc

n�} // leaf vertices reachable to n�

5 for n′ ∈ N ′ do
6 for (∗, s) ∈ A do
7 Fc(n

′, s) = Fc(n
′, s) + 1

|N′|·|A| // to increment frequency

8 return Gc, Fc

all edges. If the DNS TTL expires for an edge (u, v), the edge will be removed. The
time complexity ofmaintenance isO(|Vc|) for the loop atLine 5, assumingO(|A|) =
O(|M |) = O(1).

4 Evaluation

Here, we first describe the datasets used and present some basic statistics derived
from the data. We then evaluate the estimation accuracy of SFMap. For reference,
we compare the performance of SFMap with DN-Hunter [2]. Finally, we examine
the resource consumption of SFMap, which was implemented with Python.

4.1 Datasets and Statistics

To investigate the effectiveness of SFMap, we used the two datasets, LAB and
PROD, which are the packet traces collected from a gateway router of local area
network used by a research group and a gateway router of middle-scale produc-
tion network, respectively. The basic statistics of the datasets are summarized in
Table 1. As is shown in Table 1, the datasets cover two different scales, small and
middle. Both datasets have same time length, twelve hours. Of the twelve hours,
the last two hours are used to examine the accuracy; i.e., the first 10 hours are
used for warm-up phase. We adopted the length of warm-up from the observation
of TTL distribution shown in Fig. 2; i.e., majority of the DNS resource records
had TTL values less than 10 hours.

Here, we present the characteristics of DNGs derived from our datasets. Table 2
presents the statistics of theDNGs.Forbrevity,weomitDNGswithTTLexpiration
because these DNGs should be smaller than those without TTL expiration. As is
shown in the table, Union DNGs have fewer nodes and edges. For instance, since
the number of clients for the LAB dataset is 10 (see Table 1), the total number of
nodes in the Local DNGs should be 10 × 460 = 4600. Thus, the number of total
nodes in the Union DNG (=2849) is less than the number of total nodes in the Local
DNGs. This observation implies that (1) each client-server pair in the Local DNGs

SFMap: Inferring Services Over Encrypted Web Flows 135

Table 1. Basic statistics of the datasets

learning # of # of DNS estimating # of # of HTTP # of
time clients responses time servers requests hostnames

LAB 0 ∼ 12 h 10 5,226 10 ∼ 12 h 1,705 542 1,135

PROD 0 ∼ 12 h 4,250 86,854 10 ∼ 12 h 10,785 55,091 10,534

Table 2. Statistics of the DNGs at the end of measurement period

Local DNG Union DNG
w/o TTL expiration w/o TTL expiration

mean mean total total
of nodes # of edges # of nodes # of edges

LAB 460 755 2,849 5,979

PROD 56 80 25,403 172,974

1 2 3 4 5 6 7 8 9 10
Number of candidate hosts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

1 2 3 4 5 6 7 8 9 10
Number of candidate hosts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Fig. 5. CDFs of the number of candidate hostnames for each HTTP request: LAB (left)
and PROD (right)

hasduplicate nodes and edges, and (2) theUnionDNGscanbemaintainedwith less
memory. Figure 5 shows the CDF of the number of candidate hostnames for each
HTTP request. The results suggest that roughly 15% of the HTTP requests have
multiple candidates; i.e., we must statistically estimate the original hostname from
these candidates.

4.2 Estimation Accuracy

Our methodology was evaluated using the two datasets. We make use of HTTP
as a means to evaluate the accuracy of our methodologies. The ground truth was
obtained from HTTP request headers, which contain hostname information. We
note thatalthoughthedistributionsofhostnamescouldbedifferentbetweenHTTP
and HTTPS, the fundamental mechanism of resolving hostname before starting
HTTP/HTTPS communication should be identical. From the packet traces, we

136 T. Mori et al.

Table 3. Accuracies of the estimators (exact matching)

LE LE-NTE UE UE-NTE DN-Hunter

LAB 54.98% 68.08% 71.59% 92.25% 67.90%

PROD 79.90% 88.29% 90.88% 90.88% 85.40%

Table 4. Accuracies of the estimators (public suffix matching)

LE LE-NTE UE UE-NTE DN-Hunter

LAB 57.20% 70.30% 73.80% 94.46% 73.43%

PROD 83.20% 92.12% 94.52% 94.98% 89.98%

Table 5. Accuracies of the Top-3 estimations (UE-NTE)

Exact matching Public suffix

Hit in 1 Hit in 2 Hit in 3 Hit in 1 Hit in 2 Hit in 3

LAB 92.25 97.23 98.16 94.46 98.16 98.16

PROD 90.88 95.77 96.71 94.98 97.01 97.43

readDNSpackets tobuildandupdate theDNGs.For eachHTTPrequestpair (c, s),
we estimate the hostnameand compare it against the ground truth.For comparison
purposes, we implemented DN-Hunter [2]. DN-Hunter has a single parameter that
determines the size of memory, which keeps track of tuples of (c, s,N), whereN is a
hostname.To obtain the highest performance ofDN-Hunter,we set infinite amount
of memory size. We note that this configuration did not overflow physical memory
we used in our experiments.

Table 3 and Table 4 summarize the results, where we use the notations intro-
duced in Section 3.3.Table 3 shows the estimation accuracies in the context of exact
matching, andTable 4 relaxesmatching using a public suffix [1]; i.e., we can see that
aaa.example.com and bbb.example.com are matched in the context of the public
suffix. Using the public suffix matching allows us to distinguish hostnames with dif-
ferent domains, e.g., youtube.com and google.com.

First, the accuracies were improved for estimators with no TTL expiration
(NTE). This observation suggests that there are a non-negligible number of DNS
implementations that ignore TTL settings, which agrees with a previous report [4].
Second, the Union DNG also contributed to improve the accuracy. This obser-
vation suggests that using other clients’ information is useful in improving the
accuracy when no other hint is available. Third, if we allow public suffix match-
ing, accuracies are further improved for all the estimators. The UE-NTE achieved
roughly 95% of accuracy for both datasets. Finally, the UE-NTE outperformed
DN-Hunter. For the exact matching experiments, while the estimation error rates
of DN-Hunter were 15-32%, the estimation error rates of UE-NTE were 8–9%.
Thus, UE-NTE successfully reduced the error rates by 50-70%.

DN-hunter returns a single hostnamegivena client-server pair; however, if there
are multiple candidate hostnames, SFMap can return several hostnames with the
highest likelihood probabilities. Table 5 shows the results where we accept the top

aaa.example.com
bbb.example.com
youtube.com
google.com

SFMap: Inferring Services Over Encrypted Web Flows 137

Table 6. Memory usage of RAM and processing time for UE-NTE

memory (MB) time (s)

LAB 35.1 0.8

PROD 686.2 20.6

three hostnames as estimation.Notably, accuracies exceed 96-98% for exactmatch-
ing if we pick up the top three hostnames. We note that in most cases, the host-
names ranked in the top three look similar. For instance, the top three hostnames
are: pagead2.googlesyndication.com, pubads.g.doubleclick.net, and googleads.g.
doubleclick.net, which are all attributed to Ad Network services. Thus, by extend-
ing the candidate hostnames,we can establish better estimations thatwork in prac-
tice. This extension is acceptable for our original motivation; i.e., understanding
the mix of HTTPS traffic.

4.3 Resource Consumption

We study the resource consumption of SFMap, using its implementation with
Python. We note that the implementation has a much room for improvement in
terms of optimizing resource management. Table 6 shows the amount of memory
consumed and the amount of time to process the entire data, including data for
warm-up.Theresultsdemonstrate thatour implementationofSFMapworkswithin
a reasonable amount of memory, i.e., less than 40 MB for LAB and less than 700
MB for PROD. Also, processing time is much shorter than the actual measurement
length, 12 hours. Thus, SFMap should work in a real-time fashion. We will further
discuss the scalability of SFMap in the next section.

5 Discussion

Here,we discuss the limitations of the proposed SFMap framework.We also outline
several future research directions that can help extend our framework.

5.1 Sources ofMisclassification

By carefully examining the estimation results, we found several intrinsic sources of
misclassification. There are several factors that are associated with the incomplete
measurements.Aswementionedbefore, thefirst factor is the existence of aggressive
DNScachingmechanismsthat ignoreDNSTTLsetting.Thesecond factorwe found
through this study was mobility of terminals; i.e., an IP address had already been
resolved inothernetworkbefore the terminal arrived to thevantagepoint.The third
factor we found was the use of an IP address in the URI. We found a non-negligible
number of HTTP requests had such URIs. We manually inspected the cases and
found that there are several applications that likely hard-coded an IPaddress; thus,
they never send DNS queries. Although these are not the controlling factors today,
we may need to address them if such deployments become popular in future.

pagead2.googlesyndication.com
pubads.g.doubleclick.net
googleads.g.doubleclick.net
googleads.g.doubleclick.net

138 T. Mori et al.

5.2 Scalability

As shown in Section 4.3, our SFMap implementation processed traffic collected at
middle-scale production network within a reasonable amount of memory; i.e., less
than 700 MB. Then, we may want to ask whether SFMap works for large-scale net-
works. First, because SFMap does not require per-packet processing, we believe
that the processing timedoes notmatter in practice. It just processesDNS response
packets and the first packets of HTTPS flows, ignoring remaining packets. Further-
more,aswediscussed inSection3.3, empirical studies revealedthat timecomplexity
of estimation is close toO(|Vc|+ |Ec|), which is fairly small as shown in Table 2. We
also note that estimation processes can be parallelized if we need it. Second, it is
clear that the size of DNGs increases as the number of observed client increases. If
the size of DNG becomes large enough to press the capacity of memory, we need
to eliminate old records. Instead of keeping all the records for a certain amount of
time, e.g., 12 hours, we may want to quickly delete old records that are less-likely to
be reused in future. More sophisticated way to manage the elements in DNGs is left
for the future study. Another possible solution would be to build a new algorithm
that can maintain and update DNGs in a more compact data structure. The topic
is also left for the future study.

6 Summary

The SFMap hostname estimation framework was presented. SFMap enables net-
work operators to estimate the hostnames of HTTPS traffic by observing DNS
queries/responses. To tackle the challenges that arise from the recent dynamic
deployment anddiverse implementations ofDNS ecosystems, the proposed SFMap
framework runs on top of a single key component; i.e., a DNG, which is a formal
expression that characterizes the highly dynamic and diverse nature of DNS mech-
anisms. From extensive analyses using real packet traces collected from two dis-
tinct locations with different network scales, we have demonstrated that SFMap
has good estimation accuracy and can outperform DN-Hunter, which is a state-of-
the-art estimation technique. Our experiments using middle-scale network traffic
with thousands of clients demonstrated that SFMap can be run on a standard com-
modity PC, using less than 700 MB of memory space. In future, we plan to enhance
the scalability of SFMap.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
25880020.

References

1. Public suffix list. https://publicsuffix.org/
2. Bermudez, I.N., Mellia, M., Munafo, M.M., Keralapura, R., Nucci, A.: DNS to

the rescue: discerning content and services in a tangled web. In: Proc. of IMC,
pp. 413–426 (2012)

https://publicsuffix.org/

SFMap: Inferring Services Over Encrypted Web Flows 139

3. CAIDA. Internet traffic classification. http://www.caida.org/research/traffic-
analysis/classification-overview/

4. Callahan,T.,Allman,M.,Rabinovich,M.:OnModernDNSBehavior andProperties.
SIGCOMM Comput. Commun. Rev. 43(3), 7–15 (2013)

5. Korczynski, M., Duda, A.: Markov chain fingerprinting to classify encrypted traffic.
In: Proc. of INFOCOM, pp. 781–789 (2014)

6. Mori, T., Kawahara, R., Hasegawa, H., Shimogawa, S.: Characterizing traffic flows
originating from large-scale video sharing services. In: Ricciato, F., Mellia, M.,
Biersack, E. (eds.) TMA 2010. LNCS, vol. 6003, pp. 17–31. Springer, Heidelberg
(2010)

7. Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y., Mellia, M., Munafo, M.,
Papagiannaki, K., Steenkiste, P.: The cost of the “S” in HTTP. In: Proc. of CoNext
(2014)

8. Plonka, D., Barford, P.: Flexible traffic and host profiling via DNS rendezvous. In:
Proc. of SATIN (2011)

9. Sandvine. Global internet phenomena report: 1H 2014. http://bit.ly/1jHpsW5
10. Su, A.-J., Choffnes, D.R., Kuzmanovic, A., Bustamante, F.E.: Drafting behind

akamai (travelocity-based detouring). In: Proc. of SIGCOMM, pp. 435–446 (2006)

http://www.caida.org/research/traffic-analysis/classification-overview/
http://www.caida.org/research/traffic-analysis/classification-overview/
http://bit.ly/1jHpsW5

	SFMap: Inferring Services over Encrypted Web Flows Using Dynamical Domain Name Graphs
	1 Introduction
	2 Related Work
	3 SFMap Framework
	3.1 Overview
	3.2 DNG
	3.3 Estimator
	Calculation of the Likelihood Probabilities.

	3.4 Updater

	4 Evaluation
	4.1 Datasets and Statistics
	4.2 Estimation Accuracy
	4.3 Resource Consumption

	5 Discussion
	5.1 Sources of Misclassification
	5.2 Scalability

	6 Summary
	References

