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Abstract—To automate malware analysis, dynamic malware
analysis systems have attracted increasing attention from both
the industry and research communities. Of the various logs
collected by such systems, the API call is a very promising source
of information for characterizing malware behavior. This work
aims to extract similar malware samples automatically using the
concept of “API call topics,” which represents a set of API calls
that are intrinsic to a specific group of malware samples. We first
convert Win32 API calls into “API words.” We then apply non-
negative matrix factorization (NMF) clustering analysis to the
corpus of the extracted API words. NMF automatically generates
the API call topics from the API words. The contributions of this
work can be summarized as follows. We present an unsupervised
approach to extract API call topics from a large corpus of
API calls. Through analysis of the API call logs collected from
thousands of malware samples, we demonstrate that the extracted
API call topics can detect similar malware samples. The proposed
approach is expected to be useful for automating the process of
analyzing a huge volume of logs collected from dynamic malware
analysis systems.

I. Introduction

Understanding malware behavior is a crucial first step
toward building a system that can detect newly generated
malware samples. To this end, dynamic analysis of malware
has attracted significant attentions because it enables malware
analysts to capture malwares’ behaviors without employing
the analysis of highly complex obfuscation techniques [10];
i.e., dynamic analysis extracts actual executing instructions
of obfuscated codes, which require time-consuming efforts to
analyze with static malware analysis. By carefully examining
logs collected from a dynamic malware analysis system, an
analyst may be able to identify new patterns that can be used
to detect unknown malware samples.

The number of malware samples is becoming increasingly
large. The Kaspersky Lab has reported that more than 315,000
new malicious files are detected every day [15]. Therefore,
automating the process for dynamic malware analysis is es-
sential [10]. Cuckoo Sandbox [2] is one of the automated
dynamic malware analysis systems. In general, such dynamic
malware analysis systems automate a series of malware anal-
ysis processes, such as tracing Windows API calls, recording
created files, dumping full memory, and monitoring network
activities. In addition, some systems use an external virus
checker, such as VirusTotal [4], to test the input samples.
Numerous previous studies have revealed that, of the various
outputs from automated dynamic malware analysis systems,

API call logs are the most promising sources of information for
characterizing malware behaviors [6], [7], [27]. In fact, as will
be discussed in Section II, API call logs are significantly larger
than other logs. We note the limitation of analyzing API calls
collected from a malware sandbox. It is well known that some
malware samples are protected with anti-VM techniques to
evade retro-engineering [9]. In such cases, a malware sandbox
may fail to extract API calls. Clearly, this limitation affects
our approach. However, we believe that the recent advances in
the dynamic malware analysis, e.g., anti-anti-VM techniques,
will be useful to mitigate the limitation [11], [14].

The aim of this work is to automatically compile signatures
that can be used to detect unknown malware samples from a
huge volume of API call logs collected from a large number
of malware samples. Specifically, we aim to extract “API
call topics,” which can be used as signatures for discovering
unknown malware samples that are similar to existing ones.
The key ideas are to characterize API calls using the bag-of-
words (BoW) model and to make use of non-negative matrix
factorization (NMF), which is a soft clustering algorithms. In
other words, we adopt an unsupervised learning approach. As
will be discussed in Section III-C, NMF can extract topics
from the corpus of API calls automatically. We demonstrate
that the extracted API call topics can be used as signatures that
detect unknown but similar malware samples. We evaluate our
approach with large-scale API call logs generated by executing
thousands of distinct and randomly selected malware samples.

Our work is not the first to apply machine-learning tech-
nique to analyzing API calls. In fact, several studies on
analyzing API calls have used the machine learning-based
approaches [5]–[7], [10], [18], [24]. We leave the technical
comparison between these studies and ours in section V. Here
we note that this work is distinguishable from other studies in
that it enables us to automatically extract signatures that can
be used to identify samples similar to the existing ones.

Our main contributions can be summarized as follows:

• We present an unsupervised approach to extract API call
topics from a large API call corpus.

• We demonstrate that the extracted API call topics can detect
similar malware samples.

We believe that the proposed approach is useful for automating
the process of analyzing a huge volume of logs collected from
dynamic malware analysis systems.



TABLE I. Top-10 antivirus checkers in detection rates for FFRI Dataset
2013.

Antivirus checkers Detection rates (%)
Kaspersky 76.5

GData 74.4
AntiVir 74.3
Ikarus 74.0

BitDefender 73.5
F-Secure 72.0

Panda 71.1
AVG 71.1

VIPRE 70.8
ESET-NOD32 70.5

The remainder of this paper is organized as follows. We
first describe the dataset we used for analysis in Section II.
Section III presents the proposed approach and its evaluation,
and Section VI concludes this paper.

II. Dataset

Of the various dynamic malware analysis systems [10], this
work adopts Cuckoo Sandbox [2] because of its growing pop-
ularity in both industry [8] and the research community [12],
[23]. We use the dataset called FFRI Dataset that is a part
of the MWS Dataset [1]. The MWS Dataset is a collection
of datasets shared among the Japanese industry and security
researchers. The FFRI Dataset contains the analysis results of
Cuckoo Sandbox for a given set of malware samples.

The malware executable files used in the FFRI Dataset were
randomly sampled from a huge collection of malware samples
obtained from various sources, such as drive-by-downloads or
honeypots. All the collected samples were manually inspected
by experts and labeled as malware. The data consists of
Cuckoo Sandbox logs of 2,641 malware samples collected
from September 2012 to March 2013. The format of all mal-
ware samples was the Portable Executable (PE) format used
in Windows operating systems. These malware samples were
executed on Cuckoo Sandbox in 90 seconds and generated 1.7
GB of dynamic analysis logs in JSON format. The executed
samples were able to access to the network and network
services like DNS and Web in a controlled environment. We
observed that some samples did not show any activities when
we executed them in a testbed. We eliminated such samples
from our analysis. Of all the Cuckoo sandbox logs in the FFRI
dataset, 87.05% of lines were attributed to those for API calls.

Figure 1 shows the CDF of the number of API calls
per malware sample. The dashed line shows the mean value
(644.9). Whereas the majority of the samples had more than
400 API calls, a few samples had only a small number of
API calls. Malware samples that exhibited a very low number
of API calls likely failed to execute correctly, therefore, we
pruned malware samples that had fewer than 10 API calls. As
we mentioned before, it is possible that these malware samples
were protected with anti-VM techniques. We leave such cases
for future study.

Like other dynamic malware analysis systems, Cuckoo
Sandbox provides a module that searches MD5 digests of the
input samples from VirusTotal [4], which is a publicly available
web portal that provides the results of various antivirus check-
ers. VirusTotal detection results were recorded for each input
malware executable file. On average, the number of antivirus

TABLE II. Summary of dataset

Data Period # of samples
D1 Sep 2012 – Feb 2013 962
D2 Mar 2013 452

Total Sep 2012 – Mar 2013 1, 414
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Fig. 1. CDF of the number of API calls per malware sample.

checkers used for each malware sample was greater than 40.
Table I presents the breakdown of detection rates for the Top-
10 antivirus checkers.

To evaluate our analysis, we made use of labels generated
by the Kaspersky antivirus checker [3], which exhibited the
highest detection rates with our dataset. Here we note the
two limitations when we use the labels generated by antivirus
vendors. First, even the antivirus checker with the highest
detection rate missed roughly 20 % of the malware samples.
Because all the samples used for this analysis are actually
malware, this observation indicates that the results obtained
by a single antivirus checker are insufficient to detect malware
adequately. Second, Mohaisen [21] empirically revealed that
the labels created by antivirus checkers are not complete nor
consistent with each other. Given these limitations in mind,
we make use of labels as a hint to objectively interpret the
clustering outputs produced by our approach.

We now show the naming convention used by Kaspersky.
According to Ref. [25], it is defined as follows:

[Prefix:]Behaviour.Platform.Name[.Variant]

Prefix and Variant are optional records, which represent
a subsystem that detects a malware and variants of a malware,
respectively. Notice that if Prefix is set to HEUR, the malware
sample was detected with some heuristics; thus, its origin
is not clear in general. Behavior represents the activity of
samples such as Viruses, Worms, Trojans, Malicious Tools,
Adware, Riskware, Pornware, and etc. Platform represents
the operating systems, e.g., Win32, Linux, multi, and etc.
Our dataset includes only Win32. Finally, Name represents the
official name of malware family.

To examine the similarity of malware samples grouped by
the extracted API call topics, we used the antivirus checker
labels. For this reason, we pruned malware samples that were
not detected by the antivirus checker. We also pruned malware



TABLE III. Detected malware families (D1).

Detected malware families # of samples
Worm.Win32.WBNA 152 (15.8%)
Trojan.Win32.Jorik.Vobfus 83 (8.6%)
Worm.Win32.Vobfus 56 (5.8%)
HEUR:AdWare.Win32.iBryte 36 (3.7%)
Trojan-PSW.Win32.Tepfer 34 (3.5%)
Trojan-Spy.Win32.Zbot 30 (3.1%)
Worm.Win32.VBNA 25 (2.6%)
Trojan.Win32.Agent 24 (2.5%)
Trojan.Win32.VBKrypt 20 (2.1%)
Trojan.Win32.SelfDel 19 (2.0%)
Others 483 (50.3%)
Total 962

TABLE IV. Detected malware families (D2).

Detected malware families # of samples
Worm.Win32.WBNA 123 (27.2%)
Worm.Win32.Vobfus 28 (6.2%)
Trojan.Win32.Jorik.Vobfus 27 (6.0%)
Trojan.Win32.SelfDel 24 (5.3%)
Trojan-PSW.Win32.Tepfer 21 (4.6%)
Trojan-Spy.Win32.Zbot 13 (2.9%)
Worm.Win32.VBNA 11 (2.4%)
Backdoor.Win32.Simda 8 (1.8%)
Trojan.Win32.Midhos 7 (1.5%)
Trojan.Win32.VB 7 (1.5%)
Others 183 (40.6%)
Total 452

samples whose family names were detected as Generic, which
indicates that the detected samples were not precisely classified
by the commercial antivirus checker. However, the proposed
scheme can be applied to such samples.

To evaluate the proposed detection scheme, we divided the
remaining data into two subsets, datasets D1 and D2. Table II
summarizes the datasets used for our analysis. Tables III
and IV present breakdowns of the labels generated by the
antivirus checker. For brevity, we omit the differences among
variants.

III. Methdologies for analyzing API Call Topics

Here, we describe the methodologies developed in this
study. First, we present data preprocessing schemes required
to apply API call logs to the NMF clustering algorithm. Next,
we show an overview of the NMF algorithm with some actual
clustering examples. We also show the way of choosing an
adequate parameter for the NMF algorithm.

A. Creating feature vectors with API words

This subsection describes the process for converting API
calls into feature vectors that can be applied to the clustering
algorithm. We first convert an API call into an “API word.”
We then compile feature vectors from the set of generated API
words.

Figure 2 presents an example of the log output for a single
API call. Note that because of space limitation, the original
JSON formatted Cuckoo Sandbox log has been modified
slightly without changing the content. In Fig. 2, api and
arguments represent the API function name and its argu-
ments, respectively. arguments consists of argument name(s)
(name), and argument value(s) (value). We use these three
variables to convert an API call into an “API word”. This

"category": "system",
"status": "FAILURE",
"return": "0xc0000135",
"timestamp": "2013-02-28 12:03:55,656",
"thread_id": "432",
"repeated": 1,
"api": "LdrGetDllHandle",
"arguments":
[{"name": "FileName",
"value": "C:\\WINDOWS\\system32\\rpcss.dll"},
{"name": "ModuleHandle",
"value": "0x00000000"}]

Fig. 2. An example of API call log.

conversion allows us to employ several techniques used in
natural language processing (NLP), e.g., the BoW model, TF-
IDF weighting, etc. Note that API calls have other potentially
useful features such as return values or thread IDs. However,
we omitted analysis of such features in this work.

As is shown in Table V, there are several ways to convert
an API call into an API word. For instance, Level 0 consists
of only API function names, and Level 3 consists of the three
variables mentioned previously. In Table V, n and v denote
the name and value, respectively. In the definition of Level 2
, m() is a masking function that is applied to hex strings. This
masking function eliminates the high variability of values, such
as memory addresses. After extensive experiments, we found
that the Level-3 definition performed the best among the four
levels. However, because of space limitations, we omit details
of these experiments. Throughout this paper, we adopt Level-3
API words.

Using the API words, we generate a feature vector for each
malware sample. To achieve this, we use the BoW approach
with TF-IDF word weighting, which is a widely used natural
language processing technique. Here, let the set of API words
collected from all malware samples be W = {w1,w2, . . . ,wΩ}.
A feature vector of the i-th malware sample is denoted as

xi = {ξi(w1), ξi(w2), ..., ξi(wΩ)},

where ξi(w j) = tf(i,w j) × idf(M,w j) and M is a set of all
malware samples. Here, tf and idf are defined as follows:

tf(i,w j) =
f (i,w j)∑
j f (i,w j)

idf(M,w j) = log
|M|

|{m ∈M : w j ∈ m}| ,

where f (i,w j) is the frequency of an API word w j, in the i-th
malware sample. Interested reader will refer to literatures such
as [19].

B. Feature selection

Before we apply feature vectors to the clustering algorithm,
we employ feature selection based on the frequencies of API
words. The key idea is to eliminate API words that are unlikely
to contribute to malware classification. Although the TF-IDF
approach does work appropriately to some extent, we have
determined empirically that feature selection improves the
quality of clustering. We first apply DF-thresholding, which
is widely used for text classification tasks [28]. Here, we



TABLE V. Definitions of API words and their examples.

level definitions examples
Level 0 api "LdrGetDllHandle"
Level 1 api:n1:n2:. . . "LdrGetDllHandle":"FileName":"ModuleHandle"
Level 2 api:n1:m(v1):n2:m(v2):. . . "LdrGetDllHandle":"FileName":"C:\\WINDOWS\\system32\\rpcss.dll":"ModuleHandle":MASK
Level 3 api:n1:v1:n2:v2:. . . "LdrGetDllHandle":"FileName":"C:\\WINDOWS\\system32\\rpcss.dll":"ModuleHandle":0x00000000

eliminate very popular API words that appear in a majority
of the malware samples. These API words are too generic
to characterize a cluster of malware samples. Specifically, we
introduce a threshold, θ(0 < θ ≤ 1). If the frequency of
malware samples that consist of a given word is greater than
θ, we eliminate the word. We empirically derived the optimum
threshold (θ = 0.3). We then eliminate API words with very
low frequencies. Specifically, we eliminate the API words that
appear less than three times throughout all malware samples.
We note that the values of these parameters were not sensitive
to the actual clustering, i.e., we may use different values such
as 0.1 for θ and 5 for minimum API words count.

C. Overview of NMF

NMF is an algorithm that factorizes a matrix into two
matrices with the constraint that all three matrices have no
negative elements. The NMF algorithm and its extensions have
been applied to a large number of applications, such as object
recognition [17], text document clustering [26], and large-
scale network diagnosis [16]. Because of this non-negative
constraint, the results of NMF can be interpreted as a soft
clustering of data [13]. The advantage of NMF is that it can
extract topics that can then be used as signatures for our task. It
should be noted that other algorithms, such as Latent Dirichlet
allocation, can also perform topic modeling. However, we
employ NMF because of its simplicity and intend to explore
other algorithms in future work.

NMF factorizes the matrix, X; i.e., X = TV. Here, X is
defined using the feature vectors xi as follows:

X =
(
xT

1 xT
2 · · · xT

|M|
)
=


ξ1(w1) ξ2(w1) · · · ξ|M|(w1)
ξ1(w2) ξ2(w2) · · · ξ|M|(w2)
...

...
. . .

...
ξ1(wΩ) ξ2(wΩ) · · · ξ|M|(wΩ)

 ,
and it is factorized as

X = TV =


t11 · · · t1K
...

...
...

...
...

...
tΩ1 · · · tΩK



v11 · · · · · · v1|M|
...

...
...

...
vK1 · · · · · · vK|M|

 .
K is a parameter that controls the number of basis, which cor-
responds to clusters. The matrices T and V can be interpreted
as the topic (basis) and the clustering results, respectively.

This factorization can be obtained by minimizing the
distance between the matrices X and TV,

D(X,TV) =
∑

i

∑
j

d(xi j, tT
i v j).

Of the several distance functions, d, we adopt the Kullback-
Leibler (KL) divergence, which is defined as follows:

d(xi j, tT
i v j) = xi j log

xi j

tT
i v j
− xi j + tT

i v j.

X

=

T

×
V

X

=

T

×
V

Fig. 3. Illustration of NMF outputs, X = TV. Top: original matrices. Bottom:
sorted matrices.

The multiplicative update rule is a widely used method that
minimizes D(X,TV). For KL divergence, the multiplicative
update rule is calculated as follows [22]:

tik ← tik

∑
j vk j

(
xi j/
∑

k tikvk j

)∑
j vk j

vk j ← vk j

∑
i tik
(
xi j/
∑

k tikvk j

)∑
i tik

.

Figure 3 shows an example of the NMF result. For illus-
trative purposes, the number of samples in this example was
reduced to 100. The parameter K was set to K = 10. As is
shown in Fig. 3, NMF successfully extracts latent structural
patterns from the original malware sample-API words matrix,
X.

Given the NMF result, we can assign each malware sample
to cluster(s). For this task, we introduce a threshold γ. If an
element of v satisfies vk j > γ, then we assign the j-th sample
to the cluster k. We set γ as the quantile of the values of
the elements vk j. This value has been determined from the
experimental observations. In Fig. 3, the gray/black squares
represent clusters. It should be noted that a single malware
sample can potentially belong to multiple clusters if it has
multiple API topics.

Here we discuss the tuning of parameter, K. Figure 4
shows the relationship between K and the fraction of malware
samples that were not assigned to clusters. While the fraction
decreases as K increases, it is desirable that K be sufficiently
small to be interpretable by a malware analyst. We have
determined the value of K using the following rule:

K̂ = min(K; U(K) ≤ 0.01).

This gave K̂ = 58 for the data (D1 + D2). U(K) is the fraction
of elements that were not assigned to any clusters.
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Fig. 5. Visualizing the matrices V (sorted). Note that elements are sorted according to the primary cluster IDs.
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Fig. 4. K vs. fraction of unclassified malware samples.

Figure 5 visualizes the matrices V for various K values.
As can be seen, K = 5 is too small to classify malware
samples into clusters, and K = 100 seems too fine grained.
Slight differences can be observed for other settings. In fact,
the performance of a similar malware detection scheme is
approximately equal among those settings. Our heuristic was
able to employ an adequate range for parameter K.

IV. Analysis of API call topics.

In this section, we first show how we extracted the API
call topics using the methodologies we developed. Next, we
present how the extracted API call topics can be used to detect
new malware samples that are similar to the known ones.

A. Extraction of API call topics

Here, we use the data D1 to extract API call topics, and
we use data D1 and D2 to evaluate similar malware detection
using the extracted API topics. All of the samples in D2 were
collected after D1; therefore D2 can be regarded as unknown
future data.

From the matrix T, we can extract “topics” for each cluster
(basis). In other words, for each cluster, k, we sort the API
words tik and extract the highest S words. We call these S -
API words “API topics.” Table VIII summarizes the examples
of API call topics for the four clusters. We present the top 10
API words for each API topic. We selected these four clusters
because they consist of a large number of samples. We note
that these are selected for illustration purpose and API call
topics were extracted for other clusters as well. Also, it should
be noted that we used only data D1 for this task.

Each cluster consists of API words that are similar to the
API topics. These API words are associated with the behavior
of malware because the extracted APIs with specific arguments
should constitute user-defined functions that characterize mal-
ware activities. For example, a majority of malware samples
for cluster No. 25 were labeled as Backdoor.Win32.Simda,
which is known to replace the original volume boot record of
a hard disk drive with its own data. Such activities can also be
seen from the API topics. Thus, the detected API topics can
provide analysts investigating malware with some insight.

B. Detecting similar malware samples

For each malware sample i (i = 1, 2, . . .), we compute Rk(i),
which is the number of API words from the API-topic of
cluster k. To identify malware samples that are similar to those
in cluster k, we define a threshold, η (≤ S ). If Rk(i) ≥ η, we
consider that malware sample i is similar to those in cluster k.



TABLE VI. Detection results for training samples (D1).

Cluster # samples labels (%)
1 128 Vobfus (85.9), SelfDel (4.7), Diple (3.1), others (6.3)

15 30 Zbot (70.0), others (30.0)
25 20 Simda (80.0), Agent (10.0), others (10.0)
41 16 Azbreg (62.5), Lebag (12.5), others (25.0)

TABLE VII. Detection results for test samples (D2).

Cluster # samples labels (%)
1 94 Vobfus (87.2), SelfDel (4.3), Swisyn (2.1), others (6.4)

15 13 Zbot (69.2), Tepfer (15.4), others (15.4)
25 9 Simda (88.9), others (11.1)
41 6 Azbreg (66.7), others (33.3)

Tables VI and VII show the detected malware samples
for data D1 and D2. To demonstrate similarity, we use labels
created by the Kaspersky antivirus checker. For both datasets,
the API call topics successfully extracted malware samples that
had the similar intrinsic API calls. In addition, the detected
malware samples were actually similar to each other because
the majority of the detected samples have a single primary
label in each cluster. For example, in cluster No. 1, the majority
of detected samples were labeled as Trojan.Win32.Vobfus
for both D1 and D2. It should be noted that an extracted cluster
can include multiple labels created by an antivirus checker
because the extracted set of API calls may constitute a function
that is common among different malware, such as common
libraries or routines shared among malware developers. As we
mentioned in section II, labels created by an AV vendor are
not perfect [21]. However, the labels enables us to have hints
to objectively interpret the outputs.

Figure 6 shows the relationship between API call topics
(clusters) and primary labels. We plot the primary labels that
accounted for greater than 20% of the samples in each cluster.
As can be seen, a cluster may be composed of malware
samples from multiple labels. For example, several clusters
have malware samples for both Vobfus and WBNA. We can
also see that VB, VBNA, Vobfus, and WBNA tend to have
the same API call topics. These four malware families are
similar [20], which is why we can observe common API call
topics among them. Our methodology reveals such relation-
ships without using any a priori domain knowledge. Thus, by
carefully examining these similarities across a cluster, we can
discover latent relationships among malware families. We can
see that malware samples labeled as Vobfus and WBNA have
multiple distinct API call topics. Although not conclusive, we
conjecture that a malware family may have multiple API call
topics that reflect a set of particular functions used in malware.
Further investigation of the relationships among API call topics
and malware functions is planned for future work.

V. RelatedWork

Several studies have analyzed API calls with the machine
learning-based approaches [5]–[7], [18], [24]. They are broadly
split into two categories: classification [5], [6], [24]. and
clustering [7], [18].

Classification: Ahmed et al. [5] presented a malware detection
scheme that leverages spatio-temporal information available in
API calls. The key idea was to combine two different features,
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Fig. 6. Relationship between API call topics (clusters) and primary labels.

spatial features and temporal features, which are essentially
input/return values and call sequences, respectively. Alazab et
al. [6] proposed a method to classify Windows Executable
files into malicious files or benign files. Their key idea was
to apply the n-gram model to extract features from API calls,
which were derived by IDA Pro Disassembler. They applied
supervised machine learning (SVM) to solve the classification
task. Similarly, Ravi et al. [24] presented a method that
leverages supervised machine learning algorithm to classify
Windows Executable files into malware of benign files. Again,
the key idea was to apply the n-gram model to extract features
from sequence of API calls, which were derived API emula-
tor they developed. Among several classification algorithms,
they adopted association rule mining that exhibited the best
performance with their dataset.

Clustering: While the above studies used supervised machine
learning approach, Refs. [7], [18] used unsupervised machine
learning approach, i.e., clustering of malware samples. Bayer et
al. [7] applied clustering algorithm to analyzing malware sam-
ples. They also developed a method to extract abstracted fea-
tures from each sample; i.e., system calls, their dependences,
and the network activities. Using the abstracted features, they
demonstrated that the clustering results are accurate in that they
are similar to the clusters that are built with antivirus checkers
and manual inspection; i.e., they compared the ground-truth
data with the clustered outputs. Li et al. [18] conducted empir-
ical evaluation of malware clustering techniques by examining
several algorithms and malware features, which include the one
proposed in [7] and several variants that use API calls. Through
the extensive analysis, the concluded that the knowledge on
the ground-truth data such as cluster size distributions strongly
biases the clustering results. We note that our approach did not
rely on any ground-truth information to extract the API call
topics.

While these studies aim to evaluate the accuracy of mal-
ware clustering, our work aims to automatically compile signa-
tures that can be used to detect unknown malware samples by
using the clustering approach. We also note that while the past
studies adopted hard clustering algorithms, we adopted NMF,
which is a soft clustering algorithm; i.e., an item (malware
sample) can belong to multiple clusters (topics). We believe
that allowing this flexibility is natural because a malware
sample may have multiple features that are derived from
different malware families.

VI. Summary and future work

We have proposed a new malware detection scheme that
employs a corpus of API calls obtained by dynamic malware
analysis systems. The proposed scheme extracts API calls



TABLE VIII. Examples of API call topics: Top-10 API words for each cluster. Bold fonts indicate uncommon (sub)strings.

Cluster 1:

”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00d33000:RegionSize:0x00001000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00d34000:RegionSize:0x00001000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00d3c000:RegionSize:0x00001000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00d3b000:RegionSize:0x00001000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00d3d000:RegionSize:0x00001000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00e10000:RegionSize:0x00005000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00e10000:RegionSize:0x00004000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00e10000:RegionSize:0x00009000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00e10000:RegionSize:0x00007000:Protection:0x00000004”
”NtAllocateVirtualMemory:ProcessHandle:0xffffffff:BaseAddress:0x00e10000:RegionSize:0x00006000:Protection:0x00000004”

Cluster 15:

”LdrGetProcedureAddress:ModuleHandle:0x7c800000:FunctionName:GetComputerNameW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x77d80000:FunctionName:LookupPrivilegeValueW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x77cf0000:FunctionName:CharUpperW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x77cf0000:FunctionName:PeekMessageW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x77d80000:FunctionName:GetLengthSid:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x7c800000:FunctionName:CreateMutexW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x77cf0000:FunctionName:CharLowerW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x7c800000:FunctionName:CreateDirectoryW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x7c800000:FunctionName:OpenEventW:Ordinal:0”
”LdrGetProcedureAddress:ModuleHandle:0x77d80000:FunctionName:CreateProcessAsUserW:Ordinal:0”

Cluster 25:

”WSAStartup:VersionRequested:0x00000000”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive15:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive3:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive2:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive10:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive8:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive11:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive1:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive7:CreateDisposition:1:ShareAccess:3”
”NtCreateFile:FileHandle:0x00000000:DesiredAccess:0x00100080:FileName:PhysicalDrive9:CreateDisposition:1:ShareAccess:3”

Cluster 41:

”NtQueryValueKey:KeyHandle:0x00000084:ValueName:SaferFlags:Type:4:Information:0”
”NtQueryValueKey:KeyHandle:0x00000084:ValueName:ItemSize:Type:11:Information:”
”NtQueryValueKey:KeyHandle:0x00000084:ValueName:HashAlg:Type:4:Information:32771”
”NtQueryValueKey:KeyHandle:0x00000084:ValueName:ItemData:Type:3:Information:”
”NtOpenKey:KeyHandle:0x00000080:DesiredAccess:1:ObjectAttributes:Registry\\Machine\\Software\\Policies\\Microsoft\\Windows\\Safer\\CodeIdentifiers”,
”NtOpenKey:KeyHandle:0x00000080:DesiredAccess:131097:ObjectAttributes:Registry\\Machine\\Software\\Policies\\Microsoft\\Windows\\Safer\\CodeIdentifiers”
”NtEnumerateKey:KeyHandle:0x00000080:Index:0”,
”NtEnumerateKey:KeyHandle:0x00000080:Index:1”,
”NtQueryValueKey:KeyHandle:0x00000084:ValueName:ItemData:Type:2:Information:%HKEY CURRENT USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\Shell Folders\\Cache%OLK*\\\\x00”
”NtQueryValueKey:KeyHandle:0x00000080:ValueName:DefaultLevel:Type:4:Information:262144”

topics by applying the NMF algorithm to the corpus of
API calls. Through the analysis of thousands of malware
samples, we have demonstrated that the proposed approach
can successfully extract API call topics that can be used
to detect similar malware samples. The result is useful for
automating the creation of signatures that can be used to
extract similar malware samples. One unexpected benefit of
the proposed approach is that it can extract information to
statically analyze the malware samples because the extracted
API calls are intrinsic to such samples and may reflect the
unique behaviors among the malware samples; e.g., use of
intrinsic parameters or access to non-existing physical drives.
The proposed approach is based on unsupervised learning and
automatically extracts the API calls that are specific to a group
of malware samples without relying on any domain knowledge.
Such automation enables malware analysts to focus on new
malware samples, thereby ignoring a large number of similar
samples that have already been analyzed.

Our work leaves several research questions that need to
be addressed in our future work. As we have shown, our
approach groups multiple families into a single cluster. This
characteristics is meaningful because it can capture similarities
between them. If we simply rely on labels of malware samples,
we cannot reveal such similarities. Given the clustering results
with our approach, the important next step would be to further
look into those similarities and identify where they originate
from. In other words, is a cluster really capturing the malicious
behaviors exhibited by the samples, or just some common
API calls due to the use of a common library? Are those
API calls also present in goodware? Are they related to the
particular machine used to perform the analysis since they

contain hard-coded addresses? etc. Addressing these questions
will be useful to deepen understanding of malware families
and their origins. In our future work, we plan to work on these
questions. We also plan to extend the proposed topic analysis
to other features, such as network communication, imported
DLL files, dropped files, and printable strings.
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