
IEICE TRANS. COMMUN., VOL.E95–B, NO.6 JUNE 2012
1915

PAPER Special Section on Towards Management for Future Networks and Services

Extended Darknet: Multi-Dimensional Internet Threat Monitoring
System

Akihiro SHIMODA†a), Nonmember, Tatsuya MORI††, and Shigeki GOTO†, Members

SUMMARY Internet threats caused by botnets/worms are one of the
most important security issues to be addressed. Darknet, also called a dark
IP address space, is one of the best solutions for monitoring anomalous
packets sent by malicious software. However, since darknet is deployed
only on an inactive IP address space, it is an inefficient way for monitoring
a working network that has a considerable number of active IP addresses.
The present paper addresses this problem. We propose a scalable, light-
weight malicious packet monitoring system based on a multi-dimensional
IP/port analysis. Our system significantly extends the monitoring scope of
darknet. In order to extend the capacity of darknet, our approach lever-
ages the active IP address space without affecting legitimate traffic. Multi-
dimensional monitoring enables the monitoring of TCP ports with firewalls
enabled on each of the IP addresses. We focus on delays of TCP syn/ack re-
sponses in the traffic. We locate syn/ack delayed packets and forward them
to sensors or honeypots for further analysis. We also propose a policy-based
flow classification and forwarding mechanism and develop a prototype of
a monitoring system that implements our proposed architecture. We de-
ploy our system on a campus network and perform several experiments for
the evaluation of our system. We verify that our system can cover 89%
of the IP addresses while darknet-based monitoring only covers 46%. On
our campus network, our system monitors twice as many IP addresses as
darknet.
key words: darknet, multi-dimensional monitoring, Internet threat, sensor

1. Introduction

Internet threats caused by botnets, worms, and other mal-
wares are one of the most important security issues to be
solved urgently [1]. Referece [2] reports that the annual
worldwide economic damages from malwares exceeded $13
billion in 2006. According to Ref. [3], malware samples
have increased 22% over 2010, with 6 million unique mal-
wares found in the second quarter of 2011. From the view
point of network administrators, it is a demanding task to
protect networks from malicious attacks. One of the com-
mon approaches to locate malicious packets is to deploy
darknet [4], also called a dark IP address space on their net-
work. Darknet is a collection of global IP addresses that vac-
uums packets from the Internet and never responds to them.
Darknet intends to detect scanning packets or other anoma-
lous packets sent to unspecified destinations. Anomaly
packets are typically sent by malwares, the backscatter of
distributed denial-of-service (DoS) attacks or the misconfig-

Manuscript received October 14, 2011.
Manuscript revised January 25, 2012.
†The authors are with Computer Science Dept., Waseda Uni-

versity, Tokyo, 169-8555 Japan.
††The author is with NTT Service Integration Laboratories,

NTT Corporation, Musashino-shi, 180-8585 Japan.
a) E-mail: shimo@goto.info.waseda.ac.jp

DOI: 10.1587/transcom.E95.B.1915

uration of software. Darknet monitoring logs help network
administrators to identify attackers’ IP addresses, targeted
service ports, or the scanning behavior. These logs can be
utilized for a firewall configuration or for alerting network
users to take some action to deal with the security issue.

However, darknet monitoring has a disadvantage in that
it requires a certain amount of unused global IP address
space. Currently, the exhaustion of the IPv4 address pool is
a serious problem. IANA reported the exhaustion of its ad-
dress pool on January 31, 2011, and APNIC’s address pool
was exhausted on April 15, 2011. Therefore, it is difficult
to reserve a certain amount of global IP address space for
Internet monitoring. Thus, there is a demand for monitoring
active IP address spaces.

In order to tackle these problems, we extend the con-
cept of darknet by introducing novel flow-based monitor-
ing. A network flow is described as a tuple that consists
of four parameters: source/destination IP addresses and
source/destination ports. Thus, our flow-based monitoring
can also be called port-based monitoring. We introduce the
idea of multi-dimensional monitoring in which each TCP
port on each IP address is monitored. We isolate mali-
cious packets from the Internet backbone traffic by moni-
toring TCP flags and delays of syn/ack responses. Flow-
based monitoring also monitors malicious packets that are
destined for active hosts, because multi-dimensional moni-
toring can monitor all packets, even those that are blocked
by firewalls on active hosts. Thus, our method makes it pos-
sible to monitor almost the entire network address space,
even when there are many active hosts. Our system also im-
plements policy-based forwarding and classification in or-
der to prevent adverse effects on legitimate traffic. We can
exclude a specific address space for threat monitoring. Le-
gitimate traffic is excluded from monitoring in real-time by
using forwarding table and delay queue functions of our sys-
tem.

The rest of this paper is organized as follows: Sect. 2
reviews related works and compares them with our work.
Section 3 describes the architecture and implementation of
our system. In Sect. 4, we describe our experimental envi-
ronment and present empirical results. Finally, Sect. 5 con-
cludes our work and discusses future works.

2. Related Works

The Darknet [4] project provides an overview of darknet im-
plementation for collecting malicious packets. Darknet is

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

1916
IEICE TRANS. COMMUN., VOL.E95–B, NO.6 JUNE 2012

also called a dark IP address space. It monitors a large net-
work address space with one packet vacuum server. The
monitored packets are definitely malicious because no le-
gitimate packets can be sent to a darknet. Darknet is used
for deploying backscatter detectors, packet sniffers, or IDS
boxes. Internet Telescope [5] assigns a very large IP ad-
dress space (e.g., /8, /16) for darknet which enables us to
collect considerable attack logs for further analysis. This IP
address space is completely dedicated to threat monitoring
and never used for other Internet applications. Therefore,
it can collect clean malicious packets, and there is no pos-
sibility of mixing legitimate traffic with the sensor logs. A
large address space for passive monitoring is restricted to
very few institutions, since obtaining a large address space
is difficult because the impending IPv4 address exhaustion.

Threat monitoring systems such as NICTER [6], IS-
DAS [7], and WCLSCAN [8] distribute sensors on various
address blocks over the Internet. The placement of dis-
tributed sensors enables the collection of widespread bot-
nets/worms activities on various networks. However, the
reservation of IP address blocks for various organizations
is difficult because of the costs for placing and maintaining
sensor hardware. Moreover, these systems often hide their
sensor locations on the basis of their privacy policy. Hence,
the threat information from these systems does not contain
information about sites of attacks. Network administrators
who require more detailed logs for their networks should
place IDS or other monitoring systems in their networks.

Potemkin [9] is a large-scale honeypot system that en-
ables the distribution of more than 10,000 honeypots to large
address blocks. Potemkin automates the process of packet
forwarding with virtual servers and an intelligent gateway
that implements a highly managed session control mecha-
nism. The implementation and configuration are fairly com-
plex. The intelligent gateway is hard-coded, and the vir-
tual servers consume considerable hardware resources. This
system utilizes unused address blocks with static routing
changes. Therefore, it is not suitable for a working network.

DarkPots [10] is a large-scale honeypot platform that
enables the deployment of thousands of honeypots or sen-
sors on a working network. This system has an advan-
tage to utilize an isolated unused address space for monitor-
ing, while earlier darknet should be a continuous IP address
space which is unused. These unused addresses are located
by two methods: a black-box inspection of a router’s fire-
wall rules, and the monitoring of IP address activities by
packet capturing. This system performs passive monitoring
using sensors, and active monitoring using a Linux-process-
based honeypot with a sub-interface configuration. There-
fore, the consumption of hardware resources is low, and the
configuration is easy. However, the address coverage de-
pends on the usage of the working network. The system
should not collect many packets in networks with a few un-
used IP addresses. Further, a large address space, such as
a/8 address block or an IPv6 address space, might increase
the load of the system because the system must maintain the
list of IP addresses to be monitored.

Fig. 1 Overview of our system.

3. Architecture

In this section, we provide an overview and details of
our proposed architecture, including the multi-dimensional
monitoring, functions of components, and policy-based for-
warding. We then illustrate the implementation of our archi-
tecture.

3.1 Overview

Figure 1 illustrates an overview of the system. We focus on
TCP sessions initiated by botnets/worms activities from the
Internet. TCP packets are sent from the Internet to a local
area network. A local area networks is typically an enter-
prise or a campus network inside a gateway router. The exis-
tence of a TCP syn/ack packet depends on the configuration
of each network host or intermediate router. For example,
an active host with a firewall that allows no incoming con-
nection never sends a syn/ack packets against any incoming
packet. In contrast, an active host with no firewall enabled
should send a rst or a syn/ack packet against incoming syn
packets. There is no response packet sent against incoming
syn packets when the destination IP address is inactive if
the host machine is turned off or the address is unassigned.
Given this response behavior, we propose a flow-based ma-
licious packet monitoring system that monitors the response
behavior for each session. In addition, we propose an archi-
tecture that combines sensors or honeypots with an intelli-
gent flow forwarding mechanism. In the rest of this section,
we describe the details of flow-based monitoring, which we
call multi-dimensional monitoring. We also describe our
architecture, including policy classification, and integration
with a programmable flow switch.

3.2 Multi-Dimensional Monitoring

Figure 2 illustrates a TCP diagram working with a sensor
or a honeypot. Botnets/worms typically send a TCP syn
packet for network scanning or DoS attacks. Usually, as

SHIMODA et al.: EXTENDED DARKNET: MULTI-DIMENSIONAL INTERNET THREAT MONITORING SYSTEM
1917

Fig. 2 TCP diagram for flow-based monitoring.

a part of the TCP three-way handshake sequence, the des-
tination host responds to the TCP syn with a TCP syn/ack
packet. In this paper, the TCP syn/ack packet is called a re-
sponse packet. When an attacker’s TCP syn packets are sent
to an unused/unassigned IP address, no response packet is
sent because there is no host at the destination of TCP syn
packets. If the attacker’s TCP syn packets are destined to an
IP address that has been blocked by a firewall on an inter-
mediate router or an end host, the end host never respond to
the TCP syn with a syn/ack flagged TCP packet because it
does not receive the initial TCP syn packet. We focus on a
TCP three-way handshake where no syn/ack flagged packet
(response) is replied. Our flow-based monitoring considers
these flows to be malicious when there are no syn/ack pack-
ets (responses).

In order to isolate malicious flows from legitimate
flows, it is necessary to decide whether there is a response
(i.e., syn/ack) packet. This is not an easy decision because
some hosts send TCP syn/ack packets after a long time in-
terval after they receive the initial TCP syn packet. We set
a time interval when we monitor TCP syn/ack or rst packets
that are sent from the local network. If we have no response
(syn/ack or rst) within a specified time interval, the flow is
classified as malicious. We call this monitoring time inter-
val a forward delay. This is a heuristic approach because a
TCP syn/ack or a rst packet may be delayed for a long time.
To verify it works correctly, we surveyed the actual delay
of syn/ack or rst packets on a campus network. We found
only a few delayed packets when we set an appropriate for-
ward delay as described in Sect. 4.2. Figure 2 illustrates the
TCP protocol; our flow-based monitoring can be applied to
other protocols when a response packet is expected for an
original incoming packet in the same session. For example,
ICMP can be analyzed using flow-based monitoring because
an ICMP reply packet is expected. However, some UDP
protocols cannot be monitored by the flow-based method
because UDP-based protocols have a one-directional packet
flow such as an SNMPv1 trap [11]. In these protocols, a
response packet is not expected.

Figure 3 illustrates an example of multi-dimensional
monitoring. Our system can monitor each firewall-blocked
port on each IP address. This is the reason we call it multi-

Fig. 3 Multi-dimensional monitoring example.

dimensional monitoring, since it utilizes all TCP ports on
an IP address while darknet is single-dimensional with an
IP address. In Fig. 3, the label “Host Power” represents the
status of the power of the host along with the status of the
assigned IP addresses. The TCP port labels in the figure
are example ports used to explain what kinds of ports can
be monitored. Our method is able to monitor both active
and inactive IP addresses. We can monitor all TCP ports
on an IP address when the host is inactive (e.g., Host E)
or when its firewall blocks all incoming connections (e.g.,
Host B). Host A shows a case where an ssh/http/https server
is running on the host. In this case, all service ports (tcp/22,
80, 443) are unusable for monitoring though the rest of the
ports are available for threat monitoring. An earlier darknet
can monitor only the case of Host E and its monitoring ad-
dress space must be an IP subnet. An conventional DarkPots
[10] extends the darknet to utilize isolated address spaces for
monitoring, although it covers only the case of Host E. Our
multi-dimensional monitoring can utilize all IP addresses in
a local network that covers all the cases of Host A to Host
G without an active service port. Thus, our system greatly
extends the coverage of threat monitoring.

3.3 Component Functions

Figure 4 illustrates the component functions of the proposed
architecture. Our system has three ports: an ingress port, a
back-end port, and an egress port. The ingress port is con-
nected to a programmable flow switch such as the OpenFlow
switch [12] that is located outside of the firewall between the
Internet and the local area network. Our system is designed
for deployment on the gateway of a campus/enterprise net-
work. This observation point can cover all malware/botnet
packets sent from the Internet to the local area network. The
flow switch selectively forwards traffic that belongs to the
monitoring class described in Fig. 5. The back-end port
is connected to the monitoring network. Furthermore, we
place honeypot and/or sensor servers in the monitoring net-
work. The system forwards anomalous packets through the
back-end port and receives honeypot responses to send back
to the Internet. The egress port is used to forward honey-
pots responses from the back-end port to the Internet. This
port is necessary for honeypots to establish connections with

1918
IEICE TRANS. COMMUN., VOL.E95–B, NO.6 JUNE 2012

Fig. 4 Component functions.

Fig. 5 Overview of the flow class allocation.

botnets/worms in the Internet.
Packets from the ingress port are forwarded to a for-

warding table. The forwarding table performs flow match-
ing to identify if an incoming packet belongs to one of the
records in the table. If no matched flow exists in the for-
warding table, and the packet is a syn packet, then the packet
is pushed to the delay queue. The delay queue keeps syn
packets for a specified number of timeout seconds, which we
call forward delay. When the timeout elapses for a packet,
its flow is registered in the forwarding table and its syn
packet is transmitted to the monitoring network. We place
analyzers such as sensors or honeypots on the monitoring
network. When we observe a syn/ack flagged TCP packet
(response) in the traffic on the ingress port, the response
locator immediately removes the matching syn packet kept
in the delay queue. It also deletes the corresponding flow
record from the Forwarding Table.

Our system is installed at the gateway of a campus or
an enterprise local network and can monitor all of the mal-
wares/botnets packets sent from the Internet to the local area
network.

3.4 Policy-Based Forwarding

In this section, we describe flow-class allocation and policy-
based forwarding of our architecture, illustrated in Fig. 5.

Fig. 6 Overview of the policy-based forwarding.

We develop a forwarder system that includes the functions
of delayed syn packet detection (Fig. 4), flow classification
(Fig. 5), and policy-based forwarding (Fig. 6). All defined
classes and hosts/flows in Fig. 5 are subsets of the IP ad-
dress space of the local area network. Our architecture can
cover all the IP addresses on a local area network in prin-
ciple. However, there is a good reason for excluding some
hosts with high-priority services from threat monitoring. It
should be noted here that our analyzer includes a honeypot
that returns some packets to the original sender. Our system
utilizes unused ports even if the IP address is actually used.
Furthermore, there is a risk that our honeypot generates ma-
licious packets, which are then sent to a spoofed IP address.
If the malicious packets are detected at a remote site, our lo-
cal network may be warned even if the TCP port is not used
on our local network host. This is therefore a good reason
for excluding legitimate local host IP addresses from threat
monitoring.

Moreover, the performance of our system is affected
by the number of TCP sessions, as described in Sect. 4.4 An
IP address that creates a significant number of syn packets
(e.g., high-load web servers and NAT routers) should be ex-
cluded when a performance problem occurs in our system.

To meet these demands, our architecture has a flow
classification mechanism. When we place a programmable
flow switch on a source of gateway traffic, we can classify
flows into two classes: monitoring class and non-monitoring
class. Initially, all syn packets in the monitoring class be-
long to grey flows. Grey flow indicates an unidentified flow,
regardless of whether it is legitimate or malicious. We deter-
mine a flow as malicious only after it has passed through the
delay queue. Malicious flows and flows in the class “Dark
IP/NET” are forwarded to analyzers. When honeypots are
operated as analyzers, response packets are sent back to the
Internet through the forwarder.

Figure 6 illustrates the details of policy-based flow for-
warding that can be configured with a programmable flow
switch. We can flexibly assign a policy group to one of the
analyzers with a VLAN assignment. The forwarder com-
ponents are capable of processing VLAN tagged packets.
Therefore, we can perform flexible threat monitoring taking
into account various demands of the working network.

Both policy-based forwarding and flow class allocation
can be implemented by a flow table in the programmable

SHIMODA et al.: EXTENDED DARKNET: MULTI-DIMENSIONAL INTERNET THREAT MONITORING SYSTEM
1919

Fig. 7 Implementation of forwarder.

flow switch. Figure 5 and Fig. 6 describe the logical compo-
nents of our system. The actual implementation is described
in Sect. 3.5.

3.5 Implementation

In this section, we describe the software implementation of
our system. Our proposed architecture is actually designed
for hardware implementation useful for a large amount of
heavy traffic. However, we first developed a prototype that
implements some of our architecture components. We de-
veloped a software-based forwarder with the flow table and
the delay queue, along with the forwarding mechanism. We
also implemented a honeypot wrapper program to enable
cooperation with the forwarder. The following section de-
scribes each of the details of our developed system.

3.5.1 Forwarder Implementation

Figure 7 illustrates the forwarder implementation. We in-
tend to use a programmable flow switch like OpenFlow for
the input source. In our prototype, we use a port mirroring
function on an existing gateway switch in the campus net-
work. The forwarder is implemented using Linux OS with
three network interfaces. The system is written in C and
C++ and the code is approximately 1,500 lines, excluding
comments and blanks. We extend the function of iptables
using a netfilter-queue library [13]. There is no modification
for a kernel source. The netfilter-queue enables the program
to hook input or output packets for processing any user pro-
cess at any chain of iptables with firewall rules.

We developed the forwarder components described in
Fig. 7. The input process mainly scans all input traffic from
the external switch. Incoming syn packets are stored in the
delay queue and are never forwarded directly to the analysis
servers. The input process refers to the flow table. The flow
table stores information of current active flows. An entry
in the flow table is removed after observing a TCP fin or a
rst after waiting for a specified number of timeout seconds
(30 s in our implementation). When the input flow matches
one of the records in the flow table, it is forwarded to the
analysis servers without adding it to the delay queue.

The delay queue keeps syn packets to identify if they
are malicious or not. All the syn packets are preserved in the

Fig. 8 Analysis server implementation.

delay queue for the forward delay period. The delay queue
timer is set for each of packet individually. After the forward
delay period elapses for a packet, it is removed from the
delay queue and forwarded to analysis servers, along with
adding the flow record to the flow table. When a response
packet such as a TCP syn/ack or rst is observed by response
monitoring, it is immediately deleted from the delay queue.

The output process reviews all output traffic from the
analyzers. The output also refers to the flow table and all
packets directly forward to the Internet, as long as their
flows exist in the flow table. If a flow does not exist in the
flow table, the packet is not forwarded and it is dropped.

The response monitoring monitors mirrored traffic
whether there exists a TCP syn/ack or a rst response in the
gateway traffic. When any response packet is observed by
response monitoring, it immediately deletes the appropri-
ate syn packet from the delay queue, along with removing
the appropriate flow from the flow table. We verified that
the forwarder works at an average of 300 Mbps for campus
traffic with up to 108,402 records. We performed further
evaluations in Sect. 4.4.

Our system is implemented in front of the gateway
router in Fig. 7. If a firewall is installed such that it bypasses
the gateway, the flow switch or the mirroring point should be
placed in front of the firewall so that our system can monitor
all botnet/worm packets.

3.5.2 Analyzers Implementation

Figure 8 illustrates the implementation of a sensor and a
honeypot. A sensor is configured by iptables to receive all
incoming packets and block any outgoing packet. We use
Nepenthes [14] version 0.2.0 as a honeypot service. Ne-
penthes is a legacy, low-interaction honeypot that works as a
Linux process, though its development was stopped in 2009.
Dionaea [15] is a successor to it. Our paper focuses on
a flow-based detection system and the forwarding mecha-
nism. Although Nepenthes is obsolete, we use it in our ex-
periment because honeypot is only needed to verify that any
process-based honeypot can be deployed without software
modification. Another reason for using Nepenhtes is that it

1920
IEICE TRANS. COMMUN., VOL.E95–B, NO.6 JUNE 2012

is written in C++, light-weight, and suitable for processing
thousands of sessions simultaneously. Dionaea is written in
Python and it is difficult to handle a large number of concur-
rent sessions.

We implemented a wrapper for the honeypot that can
handle any session for any IP address. The wrapper is imple-
mented with iptables and netfilter, like the forwarder. When
a TCP syn packet arrived from an interface, a virtual in-
terface (also called a sub-interface) is created automatically
and the TCP syn packet is forwarded to the honeypot pro-
cess. The IP address of the sub-interface is the destina-
tion address of the TCP syn packet. The honeypot process
must be configured to bind to any interface (e.g., 0.0.0.0, or
INADDR ANY). Thus the honeypot process can bind to any
IP address and respond to it. The virtual interface is auto-
matically removed after several seconds have elapsed since
the last access to the interface.

4. Experiments

In this section, we first describe the configuration of our
campus network. Then we present the evaluation results
of multi-dimensional monitoring and system performance,
with some results related to comparisons between our sys-
tem and the conventional DarkPots [10] system.

4.1 Configuration

We deploy our system at the gateway on the campus net-
work. This network has a/16 address space with a band-
width of 10 Gbps. The average daily traffic is around
300 Mbps to 500 Mbps, including some experimental short-
term traffic of more than 1 Gbps. All experiments are per-
formed carefully so that legitimate traffic is not affected,
with the cooperation of the campus network administration.
We configure a span port on the gateway for mirroring all
inbound and outbound traffic at the gateway. The mirrored
traffic is forwarded to the forwarder. We configure a sensor
and honeypot as analyzers and place them at the back-end
of the forwarder.

In this section, we describe our evaluation of the pro-
posed system, and discuss some cases from the analyzers’
operation. The experiment is performed over several days
in July, 2011.

4.2 Forward-delay Evaluation

We first evaluate the forward delay parameter that plays an
important role in multi-dimensional monitoring. The pro-
posed system classifies a flow with no syn/ack response as
malicious. We define a forward delay timeout to wait for
a syn/ack packet response. To identify this parameter, we
first inspect the actual delay of the syn/ack packets on the
campus traffic.

Figure 9 illustrates the distribution of the delay of
syn/ack with four different time scales from 0 to 30 s. The
delay of syn/ack represents the time between a syn packet

Fig. 9 TCP syn/ack delay of response observed in the campus traffic.

Table 1 The number of delayed syn/ack with session trace.

forward delay 2 sec 5 sec 10 sec

delayed syn/ack pkts ratio 0.0063% 0.0029% 0.0011%
delayed syn/ack pkts [#] 99 46 18
established [#] 19 0 0
rejected [#] 51 28 3
no response [#] 29 18 15

and a syn/ack packet for each flow. We find that 99.997%
of the syn/ack packets are responded within 5 s. However,
0.0029% packets take more time to respond to the syn/ack
packets. To make a deep inspection, we track the sessions of
the syn-ack-delayed flow. Table 1 describes the tracking of
the sessions in which the syn/ack packet is delayed for more
than 2, 5, and 10 s. These times correspond to the forward
delay time of our system. According to the results, a short
forward delay implies that a considerable number of packets
are malicious, although there are established flows that may
cause false-positives. When we wait for 5 s or more, there
are no established flows.

Figure 10 illustrates the analysis of the trade-off be-
tween the delay queue size and the delayed syn/ack ratio.
The elongation of the forward delay has the merit of de-
creasing the delayed syn/ack ratio, although the delay queue
requires a relatively large amount of memory to preserve
syn packets. Note that we observed no established sessions
when we set the forward delay to 4 s or more. Considering
the overall results, we conclude that the 5 s forward delay is
the most balanced delay in our environment.

It must be mentioned that there are many delayed
abnormal syn-ack packets sent from some specific hosts.
These hosts are Planetlab [16] nodes, and their TCP session
characteristics are totally different from other hosts. For this
reason, we exclude all packets from Planetlab nodes through
our experiments with flow class allocation. Excluding Plan-
etLab nodes is sufficient to apply our system to our campus

SHIMODA et al.: EXTENDED DARKNET: MULTI-DIMENSIONAL INTERNET THREAT MONITORING SYSTEM
1921

Fig. 10 Trade-off between the delay queue size and the delayed syn/ack
ratio.

Fig. 11 The IP coverage used for threat monitoring.

network. However, in other network environments, there
may be other reasons for the delay in syn/ack packets, such
as a high server load, freezing or bugs in kernel or network
applications. It future, we intend to clarify the causes of the
syn/ack delay, and modify our system accordingly.

4.3 Effect of Multi-Dimensional Monitoring

In this section, we evaluate the effects of multi-dimensional
monitoring in terms of address coverage and sen-
sor/honeypot operation using a comparison between our
system and the conventional DarkPots system.

4.3.1 Address Coverage

Figure 11 describes the coverage of the monitoring IP ad-
dress, comparing the multi-dimensional monitoring with the
conventional darknet. The campus network has a/16 subnet;
thus, there are a maximum of 65,536 IP addresses, including
the network/broadcast address. Inactive IP addresses for the
darknet are located by the estimation of the firewall rules on
the gateway of the DarkPots system [10], [17]. Our system
can utilize both inactive and active IP addresses for monitor-
ing. We note that our system can cover an average of 89%
of the total addresses, while darknet-based monitoring only

Fig. 12 The IP coverage distribution.

covers an average of 46%.
Figure 12 illustrates the two-dimensional analysis of

the monitoring IP-port distribution on active hosts. The x-
axis represents the one-dimensional mapping for a subnet of
the campus network. The y-axis represents TCP port num-
bers from 1 to 1600. Inactive IP addresses are excluded from
this figure; hence, the result intends to display malicious
packets against the active IP addresses. The observation is
performed for one hour. A dot in the figure represents that
this port received at least two packets for one hour. In this
result, we can admit several traversal hosts or port scanning
behaviors through the address space. The vertical dotted line
indicates that this IP address is port scanned. The horizontal
dotted lines indicate a frequent host scan on this port. It is
a novel result that allows us to monitor malicious packets
against active hosts. Network administrators can perform
sensor or honeypot monitoring even if most of their network
is occupied by active hosts.

4.3.2 Analyzer Logs

In this section, we present case studies of the analysis car-
ried out by operating a sensor and a honeypot with our sys-
tem. Table 2 illustrates the TCP protocol breakdown with
the number of packets and unique hosts captured by our
system and the conventional DarkPots. Both systems use
the same sensor configuration. Only the monitoring method
is different: our system uses multi-dimensional monitoring,
and the DarkPots utilizes unused address-based monitoring.
We verify that our system can collect more anomalous pack-
ets than the conventional DarkPots. This is attributed to the
fact that our system can monitor both active and inactive IP
addresses, while darknet and DarkPots can only monitor in-
active IP addresses.

Table 3 describes the session count and malware logged
by Nepenthes honeypots on both our system and the con-
ventional DarkPots. Session represents the attack attempt

1922
IEICE TRANS. COMMUN., VOL.E95–B, NO.6 JUNE 2012

Table 2 TCP protocol breakdown of packets captured by sensors.

packets [#] unique [#]
our system DarkPots our system DarkPots

n (IP address) 7,291 3,997
tcp/21 12,441 7,910 66 21
tcp/22 305,016 190,405 359 174
tcp/80 310,507 89,999 8,385 1,855
tcp/135 82,914 55,116 373 210
tcp/139 38,169 22,267 902 453
tcp/443 89,217 43,304 7,373 1,599
tcp/445 6,616,146 2,894,336 478,968 227,033
tcp/1433 1,340,395 891,779 1,823 1,048
tcp/3389 169,670 113,301 6,262 3,534

Table 3 Honeypot sessions and malware logged by honeypots.

our system conventional DarkPots

session 91,112 51,231
n (hash) 24 19
n (malware) 11 7
n (IP address) 6,511 3,132

logged by honeypots, n(hash) represents the hash-based
malware counts and n(malware) denotes the name-based
malware counts. The monitoring address space is a spec-
ified/19 subnets including a considerable number of active
hosts. We show that our system can collect more number
of attack logs than conventional DarkPots. The number of
malware hashes and the malware names also show the prior-
ity of our system. This result is attributed to the fact that our
system can cover more IP addresses with multi-dimensional
monitoring.

4.4 Performance Evaluation

In this section, we describe the log analysis of the de-
lay queue and performance measurement. Figure 13 illus-
trates the number of add/send/delete events on the delay
queue for a syn packet. An add event denotes that a syn
packet is pushed by an output process. A send event de-
notes that a syn packet is forwarded to the analyzers after
the elapsed forward delay, whereas a del event denotes that
a syn packet is deleted by active host monitoring because
an actual syn/ack or a rst packet is located from the moni-
toring network. When we define the number of add events
as ΔA, send events as ΔS , and del as ΔD events, we can
have ΔS = ΔA − ΔD. The delay queue filters malicious
packets. We note that there are several spikes in Fig. 13.
These are caused by the host scanning by botnets/worms;
these spikes are mostly forwarded by the send events. We
also note that the transit of send events is fairly flat, while
the number of del events increases around 40,000 to 55,000
s. The del events correspond to the number of legitimate
flows, and the transition in the number of located malicious
packets is not affected by an increase in legitimate traffic.

Figure 14 illustrates the memory usage of our system
along with the sizes of the flow table and the delay queue.
The performance of our flow-based system is not affected
by the address space range but by the number of flows that

Fig. 13 The number of syn packets with delay queue events.

Fig. 14 Memory usage of the system.

the system handles at a particular moment. The memory us-
age for one syn packet is low. In our implementation, we
require a maximum of 72 bytes for one syn packet including
syn IP/TCP headers, buffer for option headers, and some
metadata such as the delay queue timer, and a maximum of
46 bytes for a flow in the flow table, including a flow hash,
timers, and other metadata. As long as we operate our sys-
tem in our campus network, we use a maximum of approxi-
mately 10 Mbytes of memory, and there are no performance
problems. In future, we intend to evaluate the system for
relatively large traffic that includes a large number of flows
and interface bottlenecks, such as packet drops.

5. Conclusion

This paper proposes a multi-dimensional malicious packet
monitoring architecture for Internet threat detection. We
implemented an efficient mechanism to forward packets to
sensors or honeypots. The proposed system has high IP ad-
dress coverage for threat monitoring compared to conven-
tional darknets. The new multi-dimensional monitoring can
utilize both inactive and active IP addresses. Thus it can

SHIMODA et al.: EXTENDED DARKNET: MULTI-DIMENSIONAL INTERNET THREAT MONITORING SYSTEM
1923

be applied to the network which has plenty of active IP ad-
dresses. In addition, the proposed flow-based method only
monitors active flows with the forwarding table. The system
uses less memory than conventional DarkPots, even if the
monitored address space is large. The new system is also
suitable for monitoring a very large address space with low
address utilization like an IPv6 environment.

Our new system is applied to a campus gateway and we
performed several experiments. The new multi-dimension
monitoring is found to be effective. We verify that there is
no established session if a TCP syn/ack packet is delayed by
more than the forward delay time on the campus network.
After a trade-off analysis of the delay queue size and the
delayed syn/ack ratio, we set the forward delay time to 5
seconds. Then, we compared the IP coverage of our system
with the conventional DarkPots. The new system achieved
89% IP address coverage while the conventional DarkPots
covers 46%. We then examined the performance of our sys-
tem. The memory usage of the proposed system depends
on the number of active flows. Finally, we demonstrate that
the new system can collect more logs than the conventional
DarkPots for sensor and honeypot operations. We are cur-
rently working on a more detailed inspection of the sys/ack
delay time. We are also planning to apply our system to an
IPv6 environment as a future work.

References

[1] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G.M. Voelker,
V. Paxson, and S. Savage, “Spamcraft: An inside look at spam cam-
paign orchestration,” Proc. Second USENIX Workshop on Large-
scale Exploits and Emergent Threats (LEET), Boston, USA, April
2009.

[2] C. Economics, “Malware report: The economic impact of viruses,
spyware, adware, botnets, and other malicious code,” Tech. Rep.,
Computer Economics, 2007.

[3] “McAfee Threats Report: Second Quarter 2011,” http://www.
mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf,
McAfee Inc., accessed Oct. 10. 2011.

[4] T. Cymru, “The darknet project,” Internet: http://www.cymru.com/
Darknet, 2004.

[5] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Inside the slammer worm,” IEEE Security & Privacy,
vol.1, no.4, pp.33–39, 2003.

[6] D. Inoue, M. Eto, K. Yoshioka, S. Baba, K. Suzuki, J. Nakazato,
K. Ohtaka, and K. Nakao, “nicter: An incident analysis system to-
ward binding network monitoring with malware analysis,” WOM-
BAT Workshop on Information Security Threats Data Collection and
Sharing, pp.58–66, 2008.

[7] Y. Toda, N. Matsumoto, and Y. Miyagawa, “Isdas: Internet scan data
acquisition system,” Joho Shori Gakkai Shinpojiumu Ronbunshu,
vol.2004, no.11, pp.3A–4, 2004.

[8] M. Ishiguro, H. Suzuki, I. Murase, and H. Ohno, “Internet threat de-
tection system using bayesian estimation,” Proc. 16th Annual Com-
puter Security Incident Handling Conference, 2004.

[9] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren,
G. Voelker, and S. Savage, “Scalability, fidelity, and containment in
the potemkin virtual honeyfarm,” ACM SIGOPS Operating Systems
Review, vol.39, no.5, pp.148–162, 2005.

[10] A. Shimoda, T. Mori, and S. Goto, “Sensor in the dark: Building un-
traceable large-scale honeypots using virtualization technologies,”
2010 10th Annual International Symposium on Applications and the

Internet, pp.22–30, July 2010.
[11] “A simple network management protocol (SNMP) — RFC 1157,”

http://www.ietf.org/rfc/rfc1157.txt, May 1990.
[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: En-
abling innovation in campus networks,” ACM SIGCOMM Com-
puter Communication Review, vol.38, no.2, pp.69–74, 2008.

[13] R. Russel, M. Boucher, J. Morris, and H. Welte, “The netfil-
ter/iptables project,” 1999.

[14] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The
nepenthes platform: An efficient approach to collect malware,” Lect.
Notes Comput. Sci., vol.4219, pp.165–184, 2006.

[15] “dionaea - catches bugs,” http://dionaea.carnivore.it/, The Honeypot
Project, accessed Oct. 10. 2011.

[16] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, “Planetlab: An overlay testbed for
broad-coverage services,” ACM SIGCOMM Computer Communi-
cation Review, vol.33, no.3, pp.3–12, 2003.

[17] A. Shimoda and S. Goto, “Flow-based Internet threat detection with
dark IP,” IEICE Trans. Commun. (Japanese Edition), vol.J92-B,
no.1, pp.163–173, Jan. 2009.

Akihiro Shimoda is currently a research as-
sistant at Waseda University, Tokyo, Japan. He
received B.E., M.E., and Doctor of Engineering
degrees from Waseda University in 2007, 2008,
and 2011, respectively. He is actively engaged
in the research of network security and network
management. He was a research associate of the
Global COE program from Mar 2008 to Mar
2009. He became a research assistant of the
Waseda University in Apr 2009. He received
Best Student Paper Award from IEEE/SAINT in

2010.

Tatsuya Mori is currently a senior re-
searcher at NTT, Tokyo, Japan. He received
B.E. and M.E. degrees in applied physics, and
Ph.D. degree in information science from the
Waseda University, Tokyo, Japan, in 1997,
1999, and 2005, respectively. Since joining
NTT corporation in 1999, He has been en-
gaged in the research of management of large-
scale networked systems and network security.
From Mar 2007 to Mar 2008, he was a visit-
ing researcher at the University of Wisconsin-

Madison. He received Telecom System Technology Award from TAF in
2010 and Best Paper Awards from IEICE and IEEE/ACM COMSNETS in
2009 and 2010, respectively. Dr. Mori is a member of ACM.

Shigeki Goto is currently a professor at the
Department of Computer Science and Engineer-
ing, Waseda University, Japan. He received B.S.
and M.S. degrees in mathematics, and Ph.D. de-
gree in Information Engineering from the Uni-
versity of Tokyo, in 1971, 1973, and 1991, re-
spectively. He joined NTT Research Laborato-
ries in 1973. He is actively engaged in research
projects in computer architecture, natural lan-
guage processing, deductive computer program
synthesis, and computer networks. From Aug

1984 to Aug 1985, he was a visiting researcher at Stanford University. He
became a professor at Waseda University in 1996, He is the president of
JPNIC. He is also a visiting professor at NII, Japan. Dr. Goto is a member
of IPSJ, JSSST, JSIAM, JSAI, ACM, and IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

