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Overview:
• We need a practical Internet traffic model

– for efficient designing and controlling of 
networks

– They should be realistic! 
wide-range measurement is required!

• Measurement and analysis of traffic
– Traditional traffic models cannot cover the 

characteristics of today’s Internet traffic
– What are they?
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Internet traffic model:
• Aggregated traffic

– aggregation of user traffic
• User traffic

– Traffic produced by Application
– Characterized by “flow”

• flow = {srcIP, dstIP, srcPort, dstPort, protocol} 

aggregated 
trafficuser traffic



Internet traffic model (cont.):
• Characteristics of aggregated traffic

– Essential metrics for controlling/designing 
network 

• Queuing behavior
• Utilization monitoring

• Characteristics of user traffic
– Essential metrics for traffic engineering

• Router algorithms to control per-flow bandwidth
– WFQ, CSFQ, RED, etc. 

• Adequate parameters are required
– flow size, flow duration, etc.

Some invariant characteristics
assumed in traditional traffic models:

• Aggregated traffic
– Variability has “long-range dependence”

(LRD)
• since early 1990’s [Willinger et. al]
• significant effect on network performance

– Marginal dist. of variability is assumed 
to be “Gaussian”
• Also important metrics for network 

performance
• Central limit theorem, fGn (fBm) models



Some invariant characteristics
assumed in traditional traffic models:

• User traffic
– Flow durations are “heavy-tailed”

• well known Pareto ON/OFF model
– Transmission rate of each flow is fixed in the 

model

• related to LRD of aggregated traffic
– Aggregation of Pareto on/off sources LRD 

• related to file size distibution
– Web objects follow zipf’s law

Are they realistic in today’s 
Internet? :
• Aggregated traffic

– LRD: in most cases, YES 
– Gaussian: ???

• User traffic
– Heavy-tailed duration: YES
– Fixed transmission rate: ???

traditional traffic model 
can cover these? (NO)
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Measured traffic data:
• Internet uplinks

– NTTlab: corporation
– Waseda: university 

• Internet backbone links
– OCN-SINET: domestic 
– APAN: international 
– WIDE: international 

Total:
269 one-way traces 
(each 300 sec long)



Measured traffic data (cont.) :

Measurement 
equipment

• Passive measurement
– captures headers of packets
– can analyze aggregated/user traffic

Network tap

Uplinks, backbone links
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Aggregated traffic :
• Traffic variability

– Variability of throughput
– X(ti): throughput time series
– Throughput time bin = 0.1 (s)

Throughput variability:

NTTlab Waseda OCN-SINET APAN WIDE
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much higher values than the average.

Throughput time series
ti ti ti ti ti



x Mbps

Marginal distribution of X(ti):

NTTlab Waseda OCN-SINET APAN WIDE
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They are all skewed (not Gaussian dist.)

Complementary cumulative distribution

Marginal distribution of X(ti) 
(cont.):
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Skewness:
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Skewness (cont.) :
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Most of traces are positively skewed

Positively 
skewed

negatively 
skewed

symmetric



Skewness and spikes:
• Positively skewed distribution

– Existence of larger values of throughput X(ti) 
spikes

• Definition of spikes
– X(ti) which exceeds mean + 2σ

• σ= standard deviation of X(ti) 

mean 2σ
+>

spike

Skewness and spikes (cont.):



Skewness and spikes (cont.):
• Occurrence ratio of spikes vs. skewness

They are positively correlated!
i.e., more spikes, more skewed

NTTlab Waseda OCN-SINET APAN WIDE
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Per-time-unit flow:

t1 t2 t3 ti-1 ti ti+1 tN

• To see how each user traffic contributes 
to the aggregated traffic

per-time-unit flows

Per-time-unit flow (cont.):

ti-1 ti ti+1

fl(ti,1)
fl(ti,2)

fl(ti,j)

fl(ti,Nti)

1

Nti b(fl(Ti,Nti))

ID# size (bit)

2

j b(fl(ti,j))

b(fl(ti,2))
b(fl(ti,1))

X(ti) = ∑



Size dist. of Per-time-unit flow:

Size distributions of per-time-unit flows
are heavy-tailed

i.e., quite large per-time-unit flows exist
= elephant flows
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NTTlab Waseda OCN-SINET APAN WIDE

Elephant flows:

• Definition of an elephant flow
– A flow fl(ti,j) whose size b(fl(ti,j)) exceeds 

mean + 2σ
• σ = standard deviation of b(fl(ti,j))

mean 2σ
+>

elephant 
flow



Elephant flows (cont.):

2. Elephant flows occupy large part of traffic.

1. # of Elephant flows is not large.

Occurrence/occupation ratio of elephant flows

[cf] Pareto ON/OFF model: 

All b(fl(ti,j)) s are almost same
i.e., No elephant flows!
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[ ] α−≈> xxXP
File size dist.

fixed rate
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Per-time-unit flow and
spike/non-spike:

Nti for each traces

The difference between spikes and non-spikes
is not remarkable

i.e., number of per-time-unit flows
does NOT largely contribute to spikes



elephant flow and spike/non-spike:

Occurrence ratio of elephant flows

spike
non-spike

elephant flow and spike/non-spike 
(cont.):

spike
non-spike

Occupation ratio of elephant flows



elephant flow and spike/non-spike 
(cont.):
• # of elephant flows

– within spikes > within non-spikes
– about 1.7 – 2.9 times higher

• A large part of spikes are elephant flows
– about 42 – 61 %
– non-spikes about 22 – 35 % 

Thus, spikes and elephant flows are
strongly related!
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Summary:
• Variability of aggregated traffic

positively skewed (non-Gaussian)

• User traffic
elephant flows exist 

– flow rates are NOT fixed

• Elephant flows are more likely within 
spikes
These findings are useful in constructing
a practical and realistic traffic model.

Appendix:
Example of aggregated traffic and flows

Total

ftp ftp

nntp http

http http

httphttp

traffic of about 5 minutes



Appendix:
time-scale issue (aggregated traffic)

Gaussian
measured

bin = 0.01 sec bin = 0.1 sec

bin = 1.0 sec bin = 10.0 sec

NTTlab trace: CCD plots of X(ti)

Appendix:
time-scale issue (user traffic)

bin = 0.01 sec bin = 0.1 sec

bin = 1.0 sec bin = 10.0 sec

NTTlab trace: LLCD plots of b(fl(ti,j))



Appendix:
time-scale issue (spikes and elephants)
NTTlab trace: occupation ratio of elephant flows

0.01 sec 0.1 sec 1.0 sec 10.0 sec

spike
non-spike


