On the Characteristics of Internet Traffic Variability: *Spikes and Elephants*

Tatsuya Mori,⁽¹⁾⁽²⁾ Ryoichi Kawahara,⁽¹⁾ Shozo Naito,⁽³⁾ Shigeki Goto⁽²⁾

(1) NTT Service Integration Laboratories

(2) Waseda University

(3) NTT Information Sharing Platform Laboratories

January 28, 2004

Outline:

- Overview
- Internet traffic model
- Measurement and analysis
 - Aggregated traffic
 - User traffic
 - Their relationship
- Summary

- Overview
- Internet traffic model
- Measurement and analysis
 - Aggregated traffic
 - User traffic
 - Their relationship
- Summary

Overview:

- We need a practical Internet traffic model
 - for efficient designing and controlling of networks
 - They should be realistic!
 → wide-range measurement is required!
- Measurement and analysis of traffic
 - Traditional traffic models cannot cover the characteristics of today's Internet traffic
 - What are they?

- Overview
- Internet traffic model
- Measurement and analysis
 - Aggregated traffic
 - User traffic
 - Their relationship
- Summary

Internet traffic model:

- Aggregated traffic
 - aggregation of user traffic
- User traffic
 - Traffic produced by Application
 - Characterized by "flow"
 - flow = {srcl P, dstl P, srcPort, dstPort, protocol}

Some invariant characteristics assumed in traditional traffic models:

- Aggregated traffic
 - Variability has "<u>long-range dependence</u>" (LRD)
 - since early 1990's [Willinger et. al]
 - significant effect on network performance
 - Marginal dist. of variability is assumed to be "<u>Gaussian</u>"
 - Also important metrics for network
 performance
 - Central limit theorem, fGn (fBm) models

Some invariant characteristics assumed in traditional traffic models:

- User traffic
 - Flow durations are "heavy-tailed"
 - well known Pareto ON/OFF model
 - Transmission rate of each flow is <u>fixed</u> in the model
 - related to LRD of aggregated traffic
 - Aggregation of Pareto on/off sources \rightarrow LRD
 - related to file size distibution
 - Web objects follow zipf's law

Are they realistic in today's Internet? :

- Aggregated traffic
 - LRD: in most cases, YES
 - Gaussian: → ??? 、
- traditional traffic model
- User traffic can cover these? (NO)
 - Heavy-tailed duration: YES
 - Fixed transmission rate: \rightarrow ???

- Overview
- Internet traffic model
- Measurement and analysis
 - Aggregated traffic
 - User traffic
 - Their relationship
- Summary

Measured traffic data:

- Internet uplinks
 - NTTIab: corporation
 - Waseda: university
- Internet backbone links
 - OCN-SINET: domestic
 - APAN: international
 - WIDE: international

	data	line	direction	bandwidth	# traces	avg packets	avg rate
ſ	NTTlab	ATM	incoming	12 Mbps	56	1.55×10^5	3.75 Mbps
	Waseda	Ethernet	incoming	100 Mbps	71	$1.84 imes 10^6$	23.31 Mbps
	OCN-SINET	ATM	OCN-to-SINET	135 Mbps	32	$8.06 imes 10^5$	12.50 Mbps
	APAN	OC3	US-to-JP	155 Mbps	44	5.98×10^5	5.14 Mbps
	WIDE	Ethernet	US-to-JP	100 Mbps	66	$1.61 imes 10^6$	18.00 Mbps

- Total:
 - 269 one-way traces
 - (each 300 sec long)

- Overview
- Internet traffic model
- Measurement and analysis

- Aggregated traffic

- User traffic
- Their relationship
- Summary

Aggregated traffic :

- Traffic variability
 - Variability of throughput
 - X(ti): throughput time series
 - Throughput time bin = 0.1 (s)

- Overview
- Internet traffic model
- Measurement and analysis
 - Aggregated traffic
 - User traffic
 - Their relationship
- Summary

Elephant flows (cont.):

Occurrence/occupation ratio of elephant flows

	NTTlab	Waseda	OCN-SINET	APAN	WIDE
Occurrence ratio	3.01 %	1.15 %	2.35 %	3.22 %	4.65 %
Occupation ratio	35.72 %	39.07 %	25.59 %	41.22 %	41.30 %

1. # of Elephant flows is not large.

2. Elephant flows occupy large part of traffic.

- Overview
- Internet traffic model
- Measurement and analysis
 - Aggregated traffic
 - User traffic
 - Their relationship
- Summary

Per-time-unit flow and spike/non-spike:

Nti for each traces

	NTTlab	Waseda	OCN-SINET	APAN	WIDE
spike	17.8	80.9	191.7	50.9	253.6
non-spike	15.2	78.2	174.3	48.3	213.7

The difference between spikes and non-spikes is not remarkable

<u>i.e.</u>, <u>number of per-time-unit flows</u> <u>does NOT largely contribute to spikes</u>

elephant flow and spike/non-spike (cont.):

- # of elephant flows
 - within spikes > within non-spikes
 - about 1.7 2.9 times higher

• A large part of spikes are elephant flows

- about 42 61 %
- non-spikes \rightarrow about 22 35 %

Thus, spikes and elephant flows are strongly related!

Outline:

- Overview
- Internet traffic model
- Measurement and analysis
 - Aggregated traffic
 - User traffic
 - Their relationship
- Summary

Summary:

- Variability of aggregated traffic
 → positively skewed (non-Gaussian)
- User traffic
 - → elephant flows exist
 - flow rates are NOT fixed
- Elephant flows are more likely within spikes
 These findings are useful in construct

<u>These findings are useful in constructing</u> <u>a practical and realistic traffic model.</u>

