2025年 暗号と情報セキュリティシンポジウム(SCIS2025)で6件の研究発表

1月28日から31日まで小倉で開催された暗号と情報セキュリティシンポジウム(SCIS2025)にて、当研究室から6件の研究を発表しました。当日の発表の質疑応答の時間や、休憩時間等で頂きました有益なフィードバックや励ましを糧に、次の研究につなげたいと思います。

(写真を撮り忘れたので、画像は生成AIによるイメージです)

  1. 丹治開, 秋山満昭, 森達哉, “Web3メタバースユーザのセキュリティ・プライバシー意識調査,” 暗号と情報セキュリティ研究会 (SCIS) 2025年1月
  2. 海老根佑雅, 野本一輝, 田中優奈, 小林竜之輔, 鶴岡豪, 森達哉, “敵対的映像攻撃が vSLAM の位置推定とドローン制御に及ぼす影響評価,” 暗号と情報セキュリティ研究会 (SCIS) 2025年1月
  3. 掛林諒平, 森達哉, “Text-to-Imageモデルに対するデータ汚染攻撃の多言語評価,” 暗号と情報セキュリティ研究会 (SCIS) 2025年1月
  4. 斧田洋人, 鶴岡豪, 田中優奈, 小林竜之輔, 大西健斗, 東拓矢, 小関義博 ,中井綱人, 森達哉, “敵対的背景を用いた歩行者検出妨害攻撃の提案と評価,” 暗号と情報セキュリティ研究会 (SCIS) 2025年1月
  5. Jiadong Liu, Tatsuya Mori, “Adversarial Trajectory Attack Targeting Autonomous Driving Planner“, 暗号と情報セキュリティ研究会 (SCIS) 2025年1月
  6. Ziling He, Jiadong Liu, Tatsuya Mori, “Robustness of Deep Reinforcement-Learning-Based Autonomous Driving to Adversarial inputs“, 暗号と情報セキュリティ研究会 (SCIS) 2025年1月

A paper got accepted!

We are happy to announce that our paper entitled “Invisible but Detected: Physical Adversarial Shadow Attack and Defense on LiDAR Object Detection” has recently been accepted for publication in the Proceedings of the 34th USENIX Conference on Security Symposium (USENIX Security 2025). Congratulations, Kobayashi-kun and the team!

Ryunosuke Kobayashi, Kazuki Nomoto, Yuna Tanaka, Go Tsuruoka, Tatsuya Mori, “Invisible but Detected: Physical Adversarial Shadow Attack and Defense on LiDAR Object Detection,” Proceedings of the 34th USENIX Conference on Security Symposium (USENIX Security 2025), August 2025 (to appear).

Overview.

This study introduces “Shadow Hack,” the first adversarial attack leveraging naturally occurring object shadows in LiDAR point clouds to deceive object detection models in autonomous vehicles. Unlike traditional adversarial attacks that modify physical objects directly, Shadow Hack manipulates the way LiDAR perceives shadows, affecting detection results without altering the objects themselves.

The key technique involves creating “Adversarial Shadows” using materials that LiDAR struggles to measure accurately. By optimizing the position and size of these shadows, the attack maximizes misclassification in point cloud-based object recognition models. Experimental simulations demonstrate that Shadow Hack achieves a 100% attack success rate at distances between 11m and 21m across multiple models.

Physical-world experiments validate these findings, showing a near 100% success rate at 10m against PointPillars and 98% against SECOND-IoU, using mirror sheets that remove almost all LiDAR-detected points from 1m to 14m. To counter this attack, the authors propose “BB-Validator,” a defense mechanism that successfully neutralizes the attack while maintaining high object detection accuracy.

This work highlights a novel and critical vulnerability in LiDAR-based perception systems and presents an effective defense, contributing to the ongoing effort to enhance the security of autonomous vehicles.